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Research in Breeding & Genetics lab at UGA

• 15-25 people (Postdocs + grad students+ visitors)

• Focus on genetic evaluation - 0.99 projects avoided

• Sponsors across species
– Holsteins Assoc.
– Zoetis (dairy and beef)
– Angus Assoc +
– Major pig companies (PIC, Smithfield, Maschoffs, DNA Genetics)
– Cobb (broiler chicken)
– USDA (Dairy, beef and fish)

• Comprehensive access to large data across species
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Projects across species

• Computing methods for genomic evaluation
• Mortality, morbidity and fertility
• GxE across managements, regions and countries
• Purebred and crossbred performance
• Changes in genetic parameters over time
• Modeling unknown parents for complex pedigree 

structure
• Heat stress
• Genomic preselection
• Competition effects
• Sexual dimorphism 
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Some questions

• Modeling heat stress
• Impact of low dimensionality of genomic 

information in farm species
• Selection as optimization - what are the losers?
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Model for heat stress
Pr

od
uc

tio
n

f(heat index)

cow 2

cow 3

cow 1

Breeding value:    BV = a + f(THI)*v

a – regular breeding value     v – heat-tolerance breeding value
f(THI)  – function of temperature humidity index
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Heat stress
National evaluation by random-

regression test-day model

Ignacio AGUILAR*1,2, Ignacy MISZTAL1 and Shogo TSURUTA1

1 Animal and Dairy Science Department, University of Georgia
2 Instituto Nacional de Investigación Agropecuaria, Las Brujas, Uruguay



Genetic trends of daily milk yield for 3 parities 
– regular effect

First Second Third
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Genetic trends for heat stress effect at 5.5o C 
over the threshold

First Second Third
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Heat stress in purebred and crossbred pigs

9kg 2 kg

Crossbred Purebred

Better environment almost eliminates heat stress

Fragomeni et al., 2016
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Status of genomic selection

• Widespread genotyping
– > 1.5 million in US Holsteins
– > 0.5 million in Angus
– > 30k/line in broilers and pigs

• Genomic evaluation
– Single-step method in pigs, beef and broilers
– Multistep method in most dairy evaluations

• preselection bias

• Interest in sequence data
– Identification of recessive genes
– Identification of causative SNP
– Targets for gene editing
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Questions in genomic selection

• SNP are genes, markers or something else?

• Good accuracy at 30k SNP , standard 50-60k, a bit better 
at 700k 
– What is magic with 50K?
– Why not more noise at 600K
– Causative SNP?

• OK accuracy with few genotyped animals 1k-2k
– Rise with extra genotypes slow
– Discrepancy between simulation and field-data results 
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Inverse of matrix that combines pedigree 
and genomic relationships

    é ù
ê ú
ë û

-1 -1
-1 -1

22

0 0
H = A +         

0 G - A Aguilar et al., 2010

  
EBVyoung =w1PA  + w2DGV-w3PI            
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Renumbering
RENUMF90

BLUP in memory
BLUPF90

Variance component estimation
REMLF90 AIREMLF90
GIBBS2F90 THRGIBBS2F90  

BLUP – iteration on data
BLUP90IODF
CBLUP90IOD

Approximate accuracies
ACCF90

Sample analysis
POSTGIBBSF90

Computing of extra matrices
PreGSF90

GEBV to SNP conversions
GWAS
PostGSF90Predictions via SNP

PredGSF90
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Large data challenge

• Computations easy up to 50k genotyped animals

• Holsteins > 3M, Angus >700k, broilers > 100k….

• Many options proposed, none worked well 
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Basis for genetic evaluation

Pedigree relationships (Henderson, 1976): 
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𝑢" = 𝑓 𝑠𝑖𝑟𝑒, 𝑑𝑎𝑚 + 𝜑

Hypothesis for genomic relationships:

𝑢" = 𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑠 + 𝜑

𝑢" = 𝑓 𝑡ℎ𝑜𝑢𝑠𝑎𝑛𝑑 𝑎𝑛𝑖𝑚𝑎𝑙𝑠 + 𝜑 Misztal et al., 2014

Faux et al., 2012



Algorithm for proven and young animals 
(APY)
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Misztal et al. (2014)
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Correlations between new and old 
algorithms

Holstein
broiler

15,0003000

Corr(GEBV, GEBV APY)

Number of animals in recursion
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Same accuracy with any choice of animals in recursion



…………

Heterogenetic and homogenic tracts in genome (Stam, 1980)

E(#tracts)=4NeL (Stam, 1980)
Ne – effective population size
L –length of genome in Morgans

Holsteins: Ne ≈100 L=30 
Me=12,000
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=			 				 				Z U Δ V Singular value decomposition
U’U=I, V’V=I, Δ

genotypes

=' 'Z Z V ΔΔV

=

= =' 'G UΔΔU UDU Genomic relationship matrix
Rank(G) ≤ min(#SNP,#anim)

SNP BLUP design matrix
Rank(Z’Z) ≤ min(#SNP,#anim)

Dimensionality of genomic information

Same dimensionality for genotypes, GRM and SNP BLUP

Dimensionality around 5-15k (VanRaden, 2008; Maciotta et al., 2013)
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True accuracies as function of number of eigenvalues 
corresponding to given explained variance in G 

Ne=200

Ne=20

Approximate number 
of animals / segments NeL 2NeL   4NeL

Accuracies maximized by 98% “information in G, 95% almost as good
Last 2% of information in G noise

UGA projects in Animal Breeding - Uppsala 
2019



Real populations study
(Pocrnic et al., 2016)

• Dairy, beef, pigs, broilers…
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Reliabilities – Jerseys (75k animals)

Milk 

Protein

Fat

3300                                6100               11,500                  assumed dimensionality
≈NeL ≈2NeL ≈4 NeL

(number of core animals)

100% = full inverse è lower accuracy

Pocrnic et al., 2016b
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Estimated dimensionality, effective 
population size and optimal number of SNP

Specie Range of Me
(95-99%)

Effective 
population 
size (L=30M)

Optimal 
number of 
SNP
(12 x Me)

Holsteins 8k-14k 149 100-180k

Jerseys 6k-12k 101 70k-150k

Angus 6k-11k 113 70k-130k

Pigs 2k-6k 43 (L=20M) 24k-72k

Chicken 3k-6k 44 36K-72k

Pocrnic et al. (2016b)
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Side effects of reduced dimensionality

• We estimate effects of SNP blocks 
– 800k in humans
– 5-15k in animals

• Impact on SNP selection and GWAS
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Understanding of limited dimensionality (II)

Number of haplotypes: 4 Ne L
Ne within each ¼ Morgan segment

¼ Morgan

Ne h
aplotypes

QTLsGenome haplotypes 

Dimensionality of ¼ Morgan case: Ne

Ne h
aplotypes

Ne h
aplotypes

èReduced dimensionality with weighted GRM
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Advantage of SNP selection and size of data
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Persistence over generations with 
different sizes of reference populations

Generations

R
el

ia
bi

lit
y

1.0

BLUP

GBLUP - small

BayesB - small

GBLUP – very large

Very large – equivalent to 4NeL animals with 99% accuracy
Are SNP effects from Holstein national populations converging?
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Reliabilities assuming different 
dimensionality with APY inverse –

Holsteins

Final score

regular G-1

4.5k                         8k                  14k    19k     77k
NeL 2NeL              4NeL

Pocrnic et al., 2016b

Are chromosome segments
unequal size?
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Is genomic selection on chromosome 
segments or chromosome clusters ?

• Simulation

– 6k animals with 50 k SNP

– Ne≈50, L = 10M

• GBLUP

– Use GRM with limited number of eigenvalues 
(corresponding to 10 to 99% variation)

– 4k animals in reference population, 2k in validation



Eigenvalue profile of GRM
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Does APY algorithm for inversion of GRM 
work on segments or eigenvalues
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How are eigenvalues influenced by 
effective population size and genome 

length?
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Graph of dimensionality as % for different Ne and L

Ne L

2Ne L

Ne 2L

Largest eigenvalues do not depend on genome size - cluster haplotypes across all genome

Can one predict Ne and L from small populations ?
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PCA Plot

PC1 and PC2 pool segments across genome
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How easy is to find causative SNP?
Manhattan plot with 100 equidistant QTL with equal effect

Pocrnic et al., 2019
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Manhattan plot with p-values
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Pooled effect of 100 equidistant QTL

Ne=60 Ne=600

UGA projects in Animal Breeding - Uppsala 
2019



Questions with limited dimensionality

• Are segments physical?
• Can they be traced to ancestors?
• Can their number be predicted from small data?
• …
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Why not single-step in dairy

• High number of genotypes
• Biases everywhere
• No free software
• Old system OK after corrections
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Genomic evaluation of US Holsteins

• ssGBLUP for 35 million US Holsteins (Masuda et al., 
2017)
– Protein
– 2.3M genotypes of SNP60K
– Computing time 6.5 h

• Unknown parent groups
– Genomic
– Metafounders

UGA projects in Animal Breeding - Uppsala 
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Genetic trend for genotyped bulls in 2014

Genotyped bulls with at least 
50 phenotyped daughters

Validation young bulls
(N=2,315)
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Predicted and actual trends for bulls

Validation young bulls
(N=2,315)

7.0 lb
(3.2kg
)

5.7 lb
(2.6kg)

Accurate trend prediction
+1.3 lb = 0.07 GSD
(2010 base) 
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Stone Mtn
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Coca Cola 
Center
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• Large research interest in GWAS
• Limitations of Bayesian methods

ssGBLUP for Genome Wide Association Studies

G=ZZ’       unweighted genomic relationships
G=ZDZ’    weighted G
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Comparison of Three Methods:

ssGBLUP
Iterations on SNP (it5)

Classical GWAS

BayesB
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Inclusion of causative SNP information

• In dairy, results varied
– No improvement in Dutch (Binsbergen, et al., 2015) or 

German Holsteins (Erbe et al., 2016)
– Up to 5% improvement in Nordic/French (Brøndum et al.)
– Up to 5% improvement in US Holsteins (Vanraden et al. (2017)

• In SNP BLUP, SNP effects regressed towards zero

• To include causative SNP:
– Need location
– need variance
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ssGBLUP accuracies using SNP60K and 100 
QTNs – simulation study

0 10 20 30 40 50 60 70 80 90 100

BLUP

ssGBLUP - unweighted SNP60k

   unweighted SNP60k + 100 QTN

    SNP60k + 100 QTN weighted by GWAS

    SNP60K + 100 QTN with "true" variance

    plus by APY

only 100 QTN unweighted by APY

Fragomeni et al. (2017)
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Use of causative variants and 
SNP weighting in a single-

step GBLUP context
Fragomeni BO1, Lourenco DAL1, Legarra A2, Tooker ME 3, VanRaden PM3, 

Misztal I1

1University of Georgia, Athens, USA
2INRA, Castanet-Tolosan, France
3AGIL ARS-USDA, Beltsville, USA



US Holstein data

• 4M records for Stature
• 3M Cows
• 4.6M Animals in pedigree
• 27k Genotyped Sires

• 54k SNP
• 54k SNP + 17k Causative Variants (VanRaden et al., 

2017)
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Including causative variants
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SNP weighting/selection 
possibly artifact of 

inadequate modeling



Can large QTL exist despite  selection?

• Genetics and genomics of mortality in US 
Holsteins

• (Tokuhisa et al, 2014; Tsuruta et al., 2014)

• 6M records, SNP50k genotypes of 35k bulls
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Milk – first parity

Mortality – first parity

UGA projects in Animal Breeding - Uppsala 
2019



UGA projects in Animal Breeding - Uppsala 2019



Resilience/efficiency and management 
intensity

Resilience

Management intensity

Beef DairyPigs ChickenSheep

Efficiency
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Production (high h2)

Raw fitness (low h2)

Management

Realized fitness 

Genomic selectionTrends
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Parameter changes with genomic selection

• Better accuracy  assuming 50% heritability for US Holsteins
• Bulmer effect?

• With changes, benefits below expectations

• Problem with estimating changes
– Biases without genomic information
– High cost with genomic evaluation
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Changes in (co)variances in pigs due to genomic selection

Heritability for growth
Genetic correlation with reproduction

Hidalgo et al. (2019)
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Possibilities and challenges ahead

• Possibilities to create perfect genotype for each environment
• 30,000 genes and changing environment

• Selection on gene networks?

• Will selection on many genes create epistasis and 
nonlinearities?

• Perfect animal or unbalanced animal?
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Conclusions

• Genomic selection relies on small effective population size

• Under genomic selection BLUP biased 

• Single-step GBLUP standard and suitable for millions of 
genotypes

• Different results with small and large data

• UGA has access to data - open to visitors
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Animal Breeding and Genetics 
Group

http://nce.ads.uga.edu
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