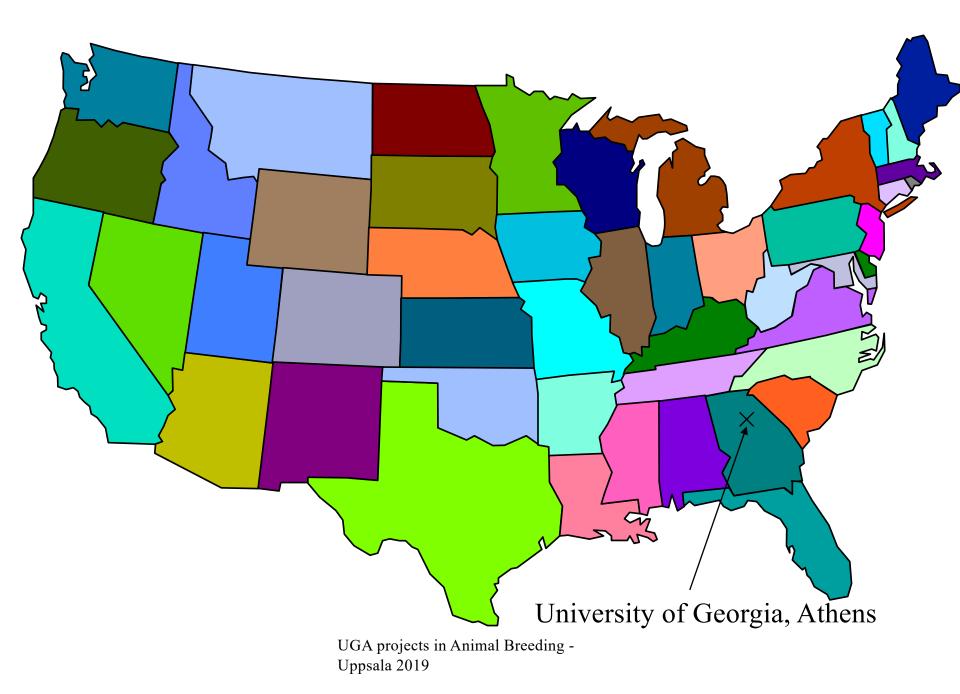
Animal breeding projects at UGA

Ignacy Misztal and Daniela Lourenco University of Georgia



THE UNIVERSITY OF GEORGIA

UGA projects in Animal Breeding -Uppsala 2019

UGA projects in Animal Breeding -Uppsala 2019

Research in Breeding & Genetics lab at UGA

- 15-25 people (Postdocs + grad students+ visitors)
- Focus on genetic evaluation 0.99 projects avoided
- Sponsors across species
 - Holsteins Assoc.
 - Zoetis (dairy and beef)
 - Angus Assoc +
 - Major pig companies (PIC, Smithfield, Maschoffs, DNA Genetics)
 - Cobb (broiler chicken)
 - USDA (Dairy, beef and fish)
- Comprehensive access to large data across species

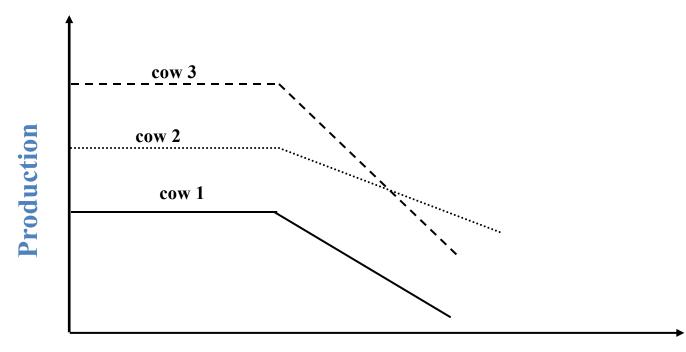
Projects across species

- Computing methods for genomic evaluation
- Mortality, morbidity and fertility
- GxE across managements, regions and countries
- Purebred and crossbred performance
- Changes in genetic parameters over time
- Modeling unknown parents for complex pedigree structure
- Heat stress
- Genomic preselection
- Competition effects
- Sexual dimorphism

Some questions

- Modeling heat stress
- Impact of low dimensionality of genomic information in farm species
- Selection as optimization what are the losers?

Model for heat stress



f(heat index)

Breeding value: BV = a + f(THI)*v

a - regular breeding value v - heat-tolerance breeding value f(THI) - function of temperature humidity index

UGA projects in Animal Breeding - Uppsala 2019

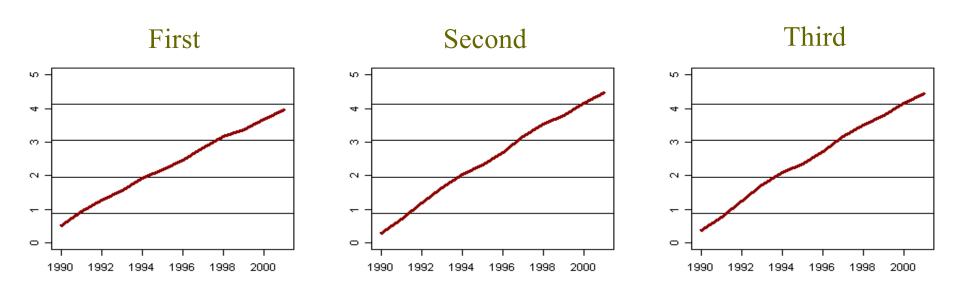
Ravagnolo et al., 2000

Heat stress National evaluation by randomregression test-day model

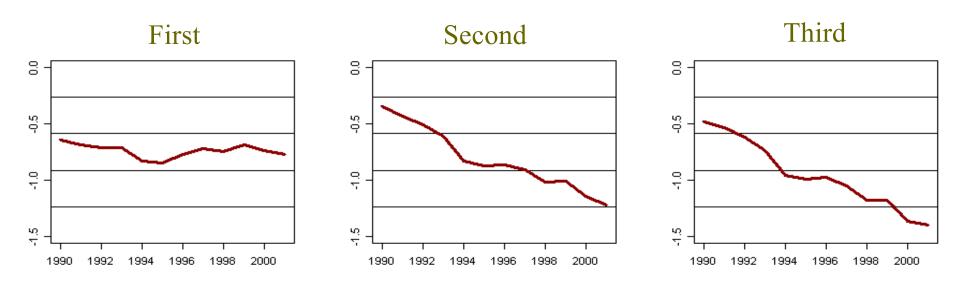
Ignacio AGUILAR*1,2, Ignacy MISZTAL1 and Shogo TSURUTA1

¹ Animal and Dairy Science Department, University of Georgia
 ² Instituto Nacional de Investigación Agropecuaria, Las Brujas, Uruguay

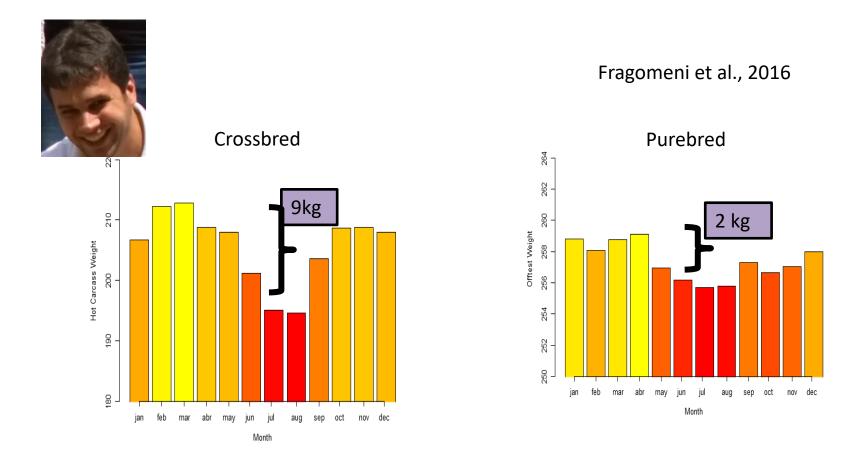
Genetic trends of daily milk yield for 3 parities – regular effect



Genetic trends for heat stress effect at 5.5° C over the threshold



Heat stress in purebred and crossbred pigs



Better environment almost eliminates heat stress

UGA projects in Animal Breeding - Uppsala 2019

Status of genomic selection

- Widespread genotyping
 - > 1.5 million in US Holsteins
 - > 0.5 million in Angus
 - > 30k/line in broilers and pigs
- Genomic evaluation
 - Single-step method in pigs, beef and broilers
 - Multistep method in most dairy evaluations
 - preselection bias
- Interest in sequence data
 - Identification of recessive genes
 - Identification of causative SNP
 - Targets for gene editing

Questions in genomic selection

- SNP are genes, markers or something else?
- Good accuracy at 30k SNP , standard 50-60k, a bit better at 700k
 - What is magic with 50K?
 - Why not more noise at 600K
 - Causative SNP?
- OK accuracy with few genotyped animals 1k-2k
 - Rise with extra genotypes slow
 - Discrepancy between simulation and field-data results

Inverse of matrix that combines pedigree and genomic relationships

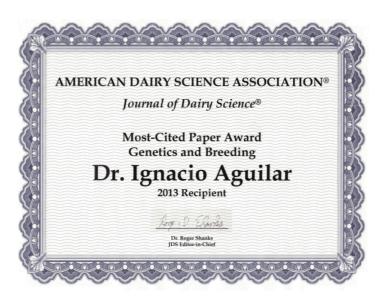
$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$
$$\mathbf{EBV}_{young} = \mathbf{W}_{1}\mathbf{P}\mathbf{A} + \mathbf{W}_{2}\mathbf{D}\mathbf{G}\mathbf{V} - \mathbf{W}_{3}\mathbf{P}\mathbf{I}$$

Aguilar et al., 2010

J. Dairy Sci. 93:743-752 doi:10.3168/jds.2009-2730 © American Dairy Science Association[®], 2010.

Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score¹

I. Aguilar,*⁺² I. Misztal,* D. L. Johnson,[‡] A. Legarra,[§] S. Tsuruta,* and T. J. Lawlor# *Animal and Dairy Science Department, University of Georgia, Athens 30602 †Instituto Nacional de Investigación Agropecuaria, Las Brujas 90200, Uruguay ‡Livestock Improvement Corp., Private Bag 3016, Hamilton 3240, New Zealand §INRA, UR631 SAGA, BP 52627, 32326 Castanet-Tolosan, France #Holstein Association USA Inc., Brattleboro, VT 05302-0808



Renumbering RENUMF90

Computing of extra matrices PreGSF90

BLUP in memory BLUPF90

BLUP – iteration on data BLUP90IODF CBLUP90IOD

Variance component estimation REMLF90 AIREMLF90 GIBBS2F90 THRGIBBS2F90

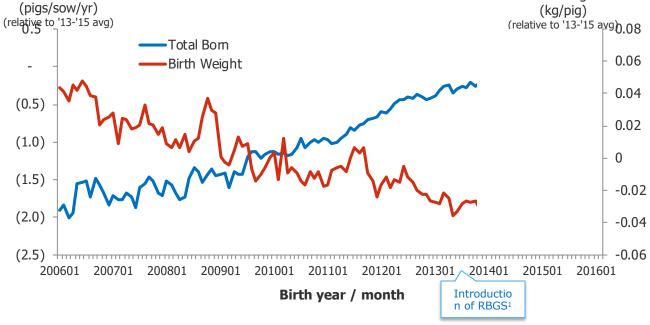
Approximate accuracies **ACCF90**

Predictions via SNP PredGSF90 GEBV to SNP conversions GWAS PostGSF90 Sample analysis **POSTGIBBSF90**

Improvement of total born and piglet birth weight

Trend: genetic improvement in birth weight and total born

Birth weight

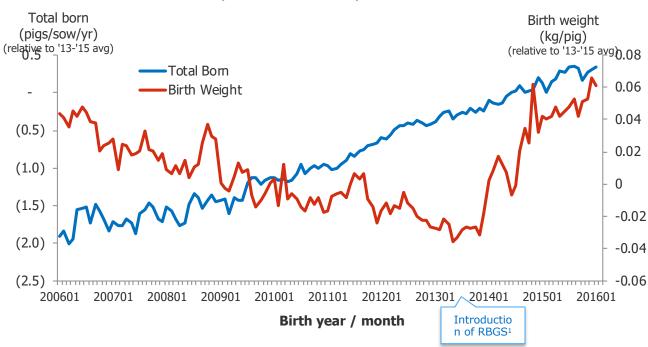


1. Relationship based genomic selection Source: PIC L02, L03 pure lines (Camborough)

Total born

Improvement of total born and piglet birth weight

Trend: genetic improvement in birth weight and total born



(PIC Genetic Nucleus)

1. Relationship based genomic selection Source: PIC L02, L03 pure lines (Camborough)

Large data challenge

- Computations easy up to 50k genotyped animals
- Holsteins > 3M, Angus >700k, broilers > 100k....
- Many options proposed, none worked well

Basis for genetic evaluation

Pedigree relationships (Henderson, 1976):

 $u_i = f(sire, dam) + \varphi$

Hypothesis for genomic relationships:

$$u_i = f(relatives) + \varphi$$
 Faux et al., 2012

 $u_i = f(thousand animals) + \varphi$ Misztal et al., 2014

Algorithm for proven and young animals (APY)

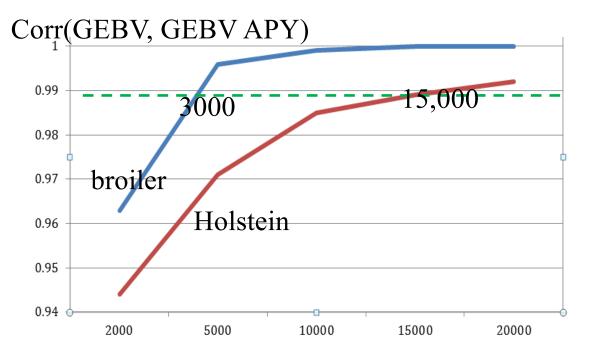
For young animals

$$u_i \mid u_1, u_2, ..., u_{i-1} = \sum_{j="proven"} p_{ij}u_j + \sum_{j="young"} e_{ij}u_j + \varepsilon_i$$

Misztal et al. (2014)

$$\mathbf{G}^{-1} = \begin{bmatrix} \mathbf{G}_{pp}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} + \begin{bmatrix} -\mathbf{G}_{pp}^{-1}\mathbf{G}_{py} \\ \mathbf{I} \end{bmatrix} \mathbf{M}^{-1} \begin{bmatrix} \mathbf{G}_{yp}\mathbf{G}_{pp}^{-1} & \mathbf{I} \end{bmatrix} \qquad \begin{bmatrix} \mathbf{Z}_{p} - \text{genotypes for proven animals} \\ \mathbf{Z}_{y} - \text{genotypes for young animals} \\ m_{i} = g_{ii} - \mathbf{z}_{i}'\mathbf{Z}_{p}'\mathbf{G}_{pp}^{-1}\mathbf{Z}_{p}\mathbf{z}_{i} \end{bmatrix}$$

Correlations between new and old algorithms



Number of animals in recursion

Same accuracy with any choice of animals in recursion

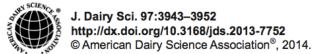
UGA projects in Animal Breeding - Uppsala 2019

Heterogenetic and homogenic tracts in genome (Stam, 1980)

.....

E(#tracts)=4NeL (Stam, 1980) Ne – effective population size L –length of genome in Morgans

> Holsteins: Ne ≈100 L=30 Me=12,000



Using recursion to compute the inverse of the genomic relationship matrix

I. Misztal,*1 A. Legarra,† and I. Aguilar‡

*Department of Animal and Dairy Science, University of Georgia, Athens 30602-2771 †INRA, UR631-SAGA, BP 52627, 31326 Castanet-Tolosan Cedex, France ‡Instituto Nacional de Investigación Agropecuaria, Las Brujas 90200, Uruguay

J. Dairy Sci. 98:1–5 http://dx.doi.org/10.3168/jds.2014-9125 © American Dairy Science Association[®], 2015.

Hot topic: Use of genomic recursions in single-step genomic best linear unbiased predictor (BLUP) with a large number of genotypes

B. O. Fragomeni,*¹ D. A. L. Lourenco,* S. Tsuruta,* Y. Masuda,* I. Aguilar,† A. Legarra,‡ T. J. Lawlor,§ and I. Misztal*

*Department of Animal and Dairy Science, University of Georgia, Athens 30602 †Instituto Nacional de Investigacion Agropecuaria, Canelones, 90200, Uruguay ‡INRA, UMR1388 GenePhySE, Castanet Tolosan, 31326, France §Holstein Association USA Inc., Brattleboro, VT 05302

GENETICS | INVESTIGATION

GENETICS | INVESTIGATION

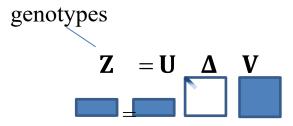
Inexpensive Computation of the Inverse of the Genomic Relationship Matrix in Populations with Small Effective Population Size

> Ignacy Misztal¹ Animal and Dairy Science, University of Georgia, Athens, Georgia 30602

The Dimensionality of Genomic Information and Its Effect on Genomic Prediction

Ivan Pocrnic,* ¹ Daniela A. L. Lourenco,* Yutaka Masuda,* Andres Legarra,¹ and Ignacy Misztal*
*Department of Animal and Dairy Science, University of Georgia, Athens, Georgia 30602, and ¹Institut National de la Recherche Agronomique, GenPhySE, F-31326 Castanet-Tolosan, France

Dimensionality of genomic information



Singular value decomposition U'U=I, V'V=I, Δ

 $G = U\Delta\Delta U' = UDU'$ Genomic relationship matrix Rank(G) \leq min(#SNP,#anim)

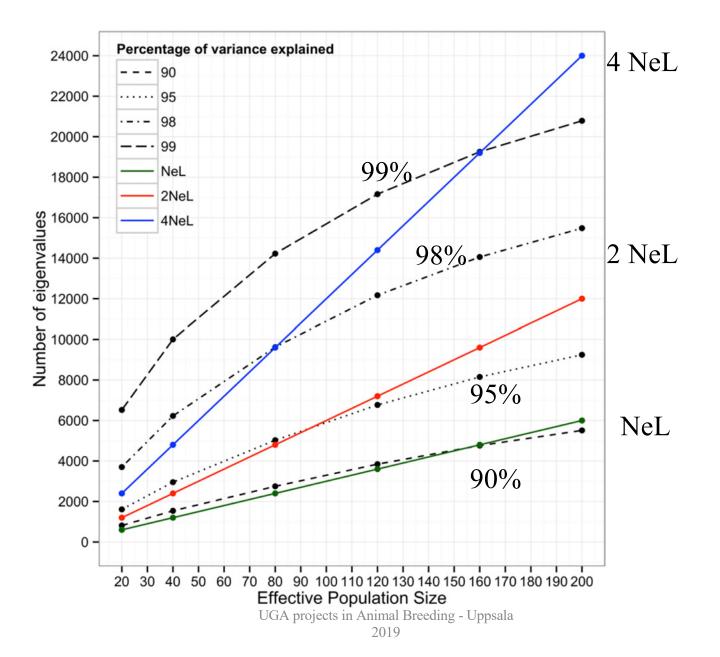
 $Z'Z = V'\Delta\Delta V$ SNP BLUP design matrix Rank(Z'Z) \leq min(#SNP,#anim)

Same dimensionality for genotypes, GRM and SNP BLUP

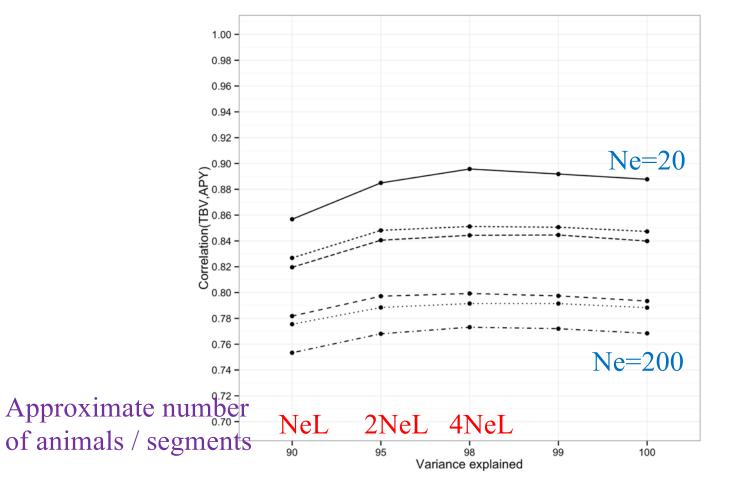
Dimensionality around 5-15k (VanRaden, 2008; Maciotta et al., 2013)

The Dimensionality of Genomic Information and Its Effect on Genomic Prediction

Ivan Pocrnic,*¹ Daniela A. L. Lourenco,* Yutaka Masuda,* Andres Legarra,[†] and Ignacy Misztal* *Department of Animal and Dairy Science, University of Georgia, Athens, Georgia 30602, and [†]Institut National de la Recherche Agronomique, GenPhySE, F-31326 Castanet-Tolosan, France



True accuracies as function of number of eigenvalues corresponding to given explained variance in G



Accuracies maximized by 98% "information in G, 95% almost as good Last 2% of information in G noise

UGA projects in Animal Breeding - Uppsala

UGA projects in Animal Breeding - Uppsala 2019

Real populations study

(Pocrnic et al., 2016)

RESEARCH ARTICLE

• Dairy, beef, pigs, broilers...

Pocrnic et al. Genet Sel Evol (2016) 48:82 DOI 10.1186/s12711-016-0261-6

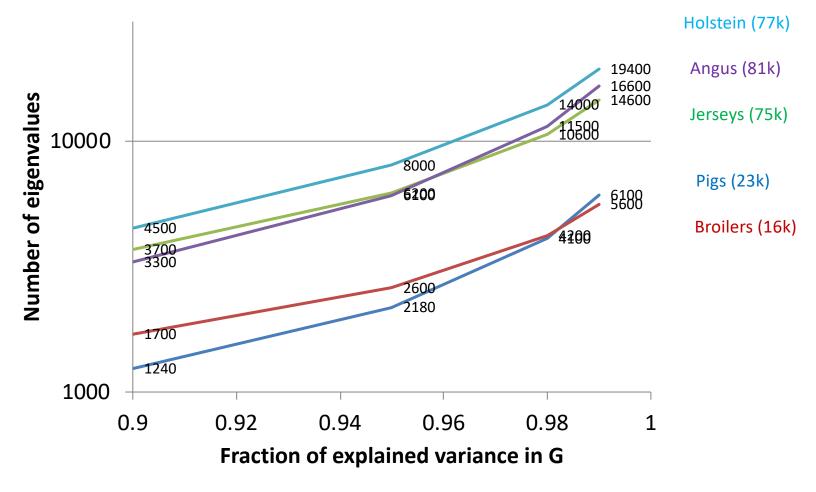
Open Access

Genetics

Dimensionality of genomic information and performance of the Algorithm for Proven and Young for different livestock species

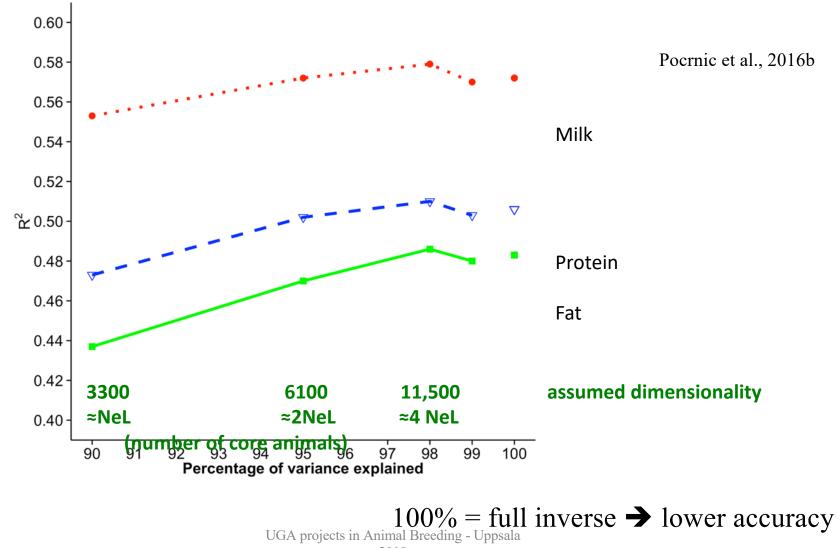
Ivan Pocrnic^{*}, Daniela A. L. Lourenco, Yutaka Masuda and Ignacy Misztal

Number of eigenvalues in G to explain given fraction of variability



UGA projects in Animal Breeding - Uppsala 2019

Reliabilities – Jerseys (75k animals)



Estimated dimensionality, effective population size and optimal number of SNP

Specie	Range of Me (95-99%)	Effective population size (L=30M)	Optimal number of SNP (12 x Me)
Holsteins	8k-14k	149	100-180k
Jerseys	6k-12k	101	70k-150k
Angus	6k-11k	113	70k-130k
Pigs	2k-6k	43 (L=20M)	24k-72k
Chicken	3k-6k	44	36K-72k

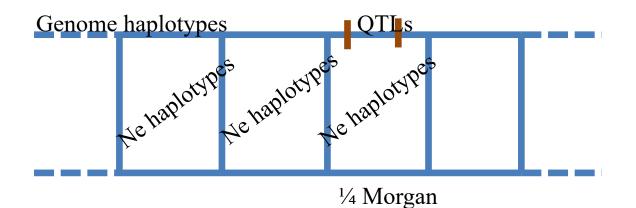
Pocrnic et al. (2016b)

Side effects of reduced dimensionality

- We estimate effects of SNP blocks
 - 800k in humans
 - 5-15k in animals
- Impact on SNP selection and GWAS

Understanding of limited dimensionality (II)

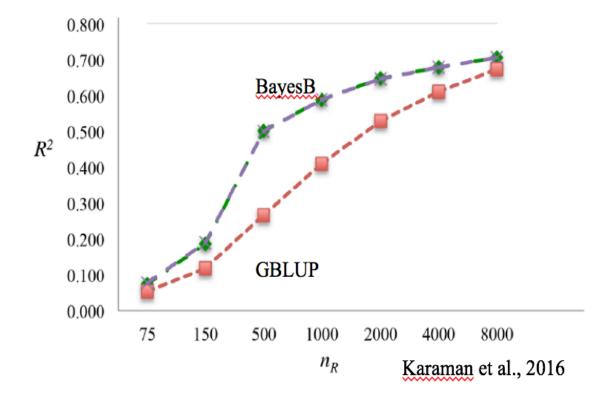
Number of haplotypes: 4 Ne L Ne within each ¼ Morgan segment



Dimensionality of 1/4 Morgan case: Ne

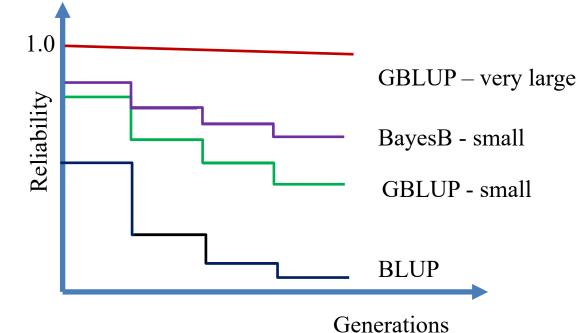
→ Reduced dimensionality with weighted GRM

Advantage of SNP selection and size of data



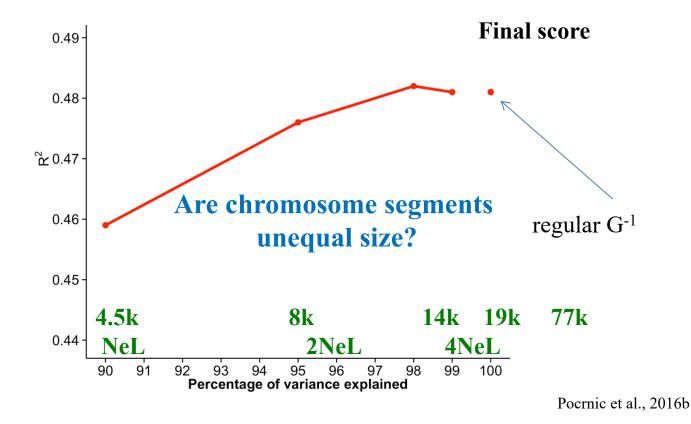
UGA projects in Animal Breeding - Uppsala 2019

Persistence over generations with different sizes of reference populations



Very large – equivalent to 4NeL animals with 99% accuracy Are SNP effects from Holstein national populations converging?

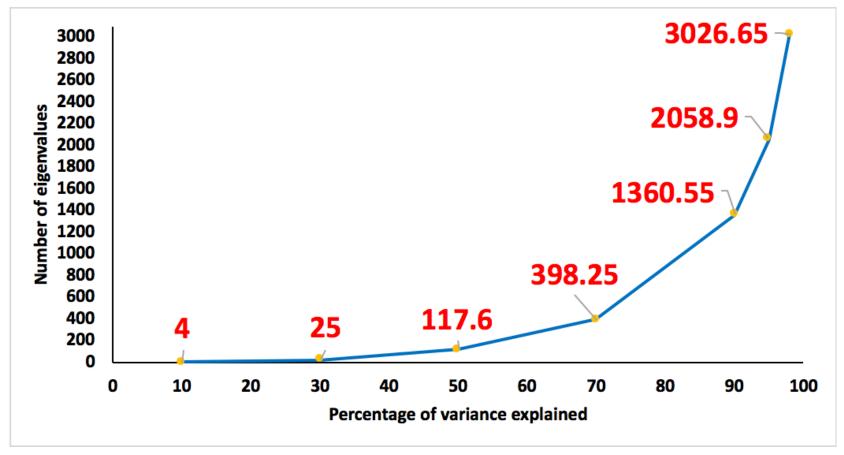
Reliabilities assuming different dimensionality with APY inverse – Holsteins



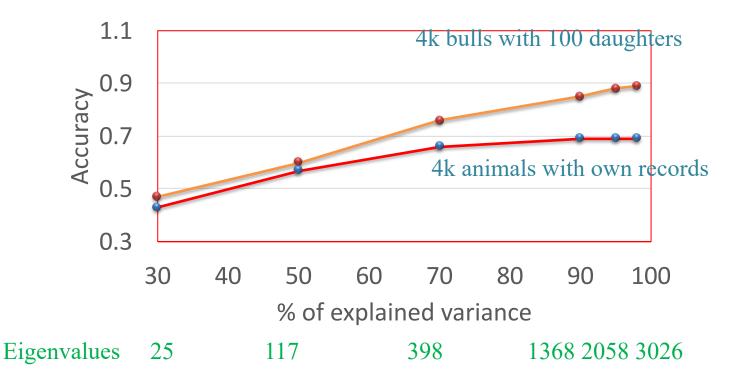
Is genomic selection on chromosome segments or chromosome clusters ?

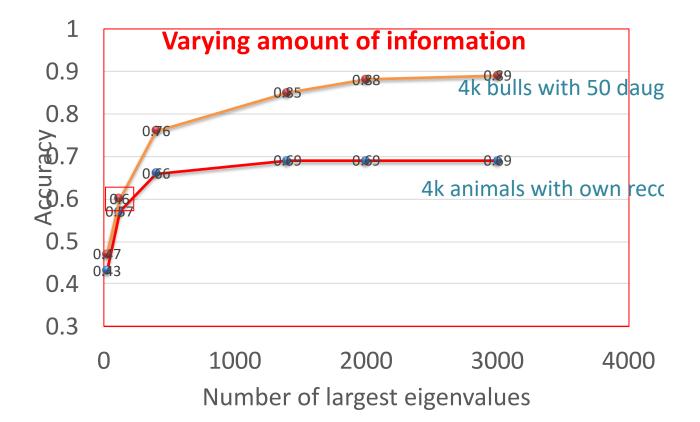
- Simulation
 - 6k animals with 50 k SNP
 - N_e≈50, L = 10M
- GBLUP
 - Use GRM with limited number of eigenvalues (corresponding to 10 to 99% variation)
 - 4k animals in reference population, 2k in validation

Eigenvalue profile of GRM

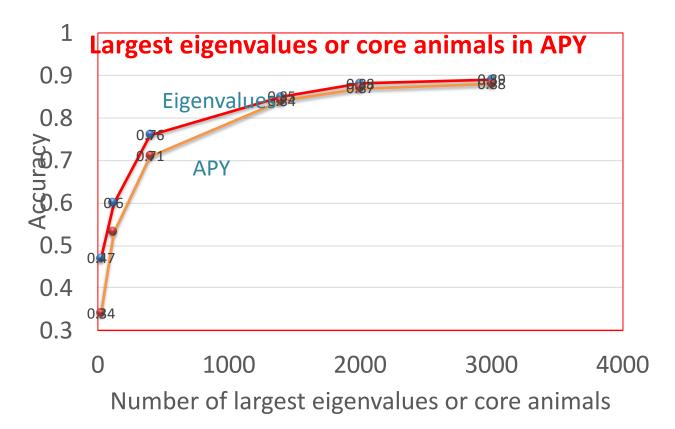


Accuracies of GBLUP using GRM with largest eigenvalues only





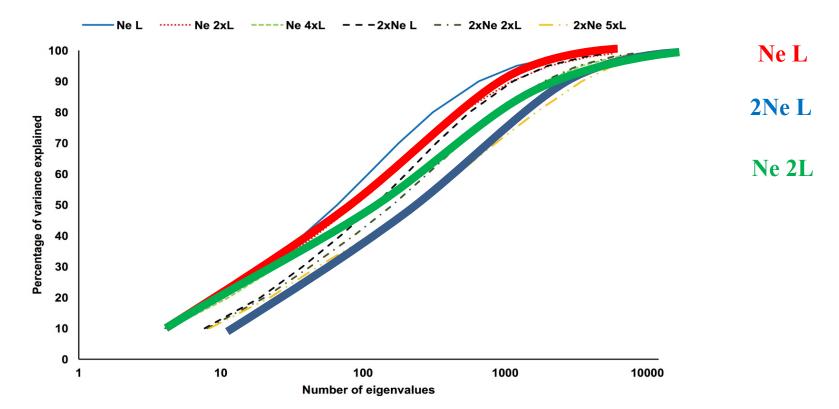
Does APY algorithm for inversion of GRM work on segments or eigenvalues



Selection on largest eigenvalues – important ancestors – reduced Ne If largest eigenvalues excluded- increased diversity?

How are eigenvalues influenced by effective population size and genome length?

Graph of dimensionality as % for different Ne and L

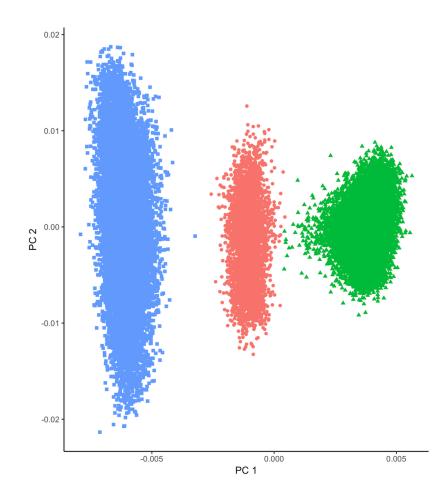


Largest eigenvalues do not depend on genome size - cluster haplotypes across all genome

Can one predict Ne and L from small populations ?

UGA projects in Animal Breeding - Uppsala

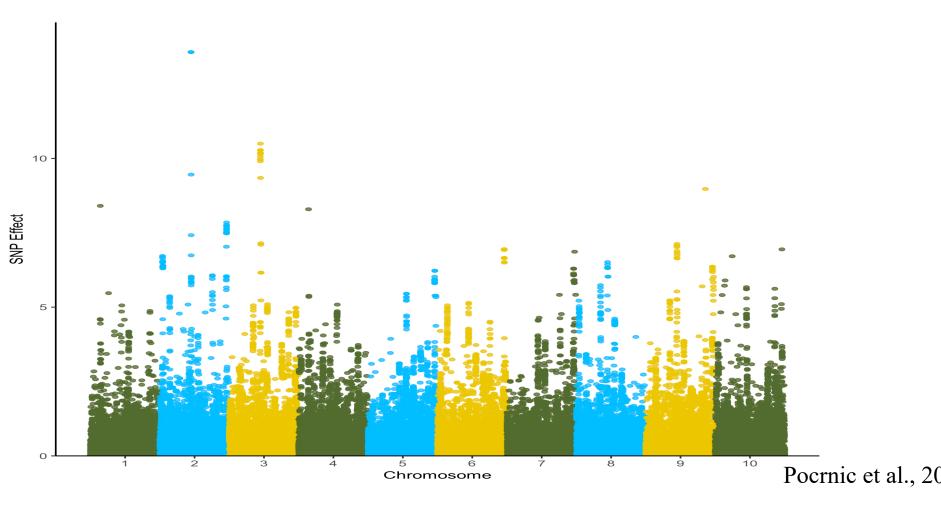
2019



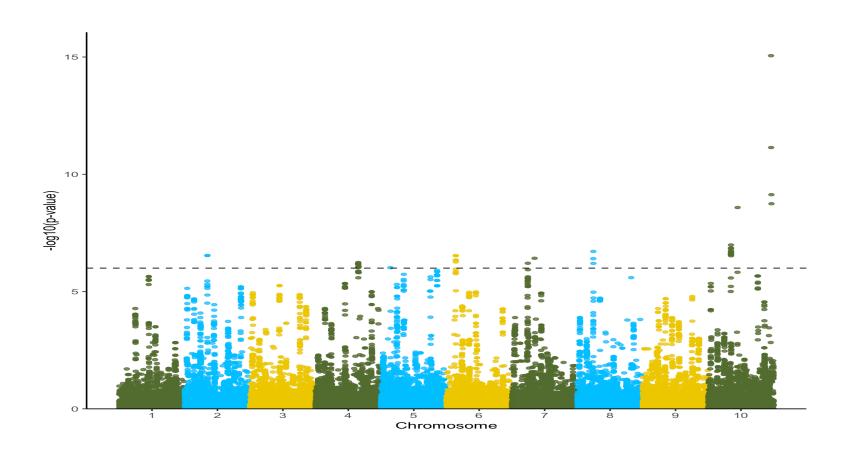
PC1 and PC2 pool segments across genome

How easy is to find causative SNP?

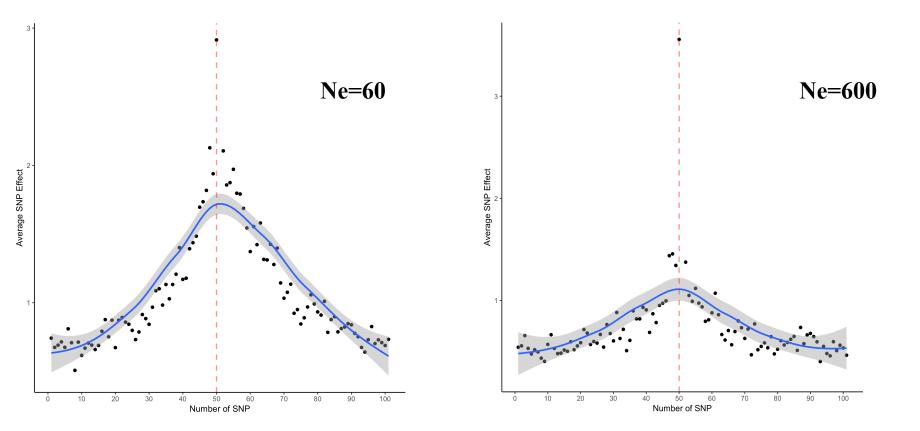
Manhattan plot with 100 equidistant QTL with equal effect



Manhattan plot with p-values



Pooled effect of 100 equidistant QTL



Questions with limited dimensionality

- Are segments physical?
- Can they be traced to ancestors?
- Can their number be predicted from small data?

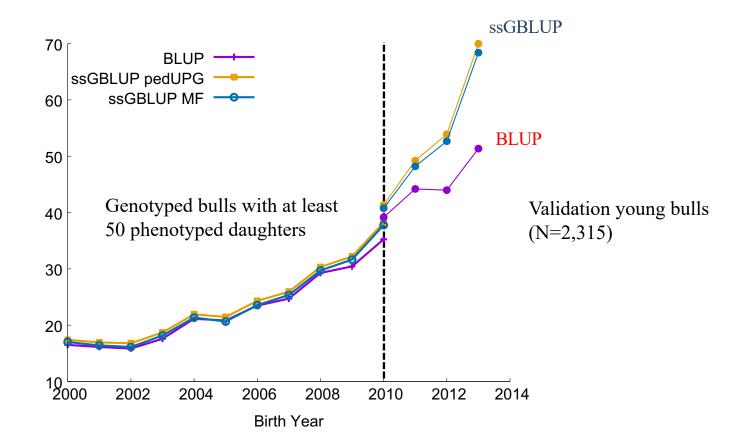
Why not single-step in dairy

- High number of genotypes
- Biases everywhere
- No free software
- Old system OK after corrections

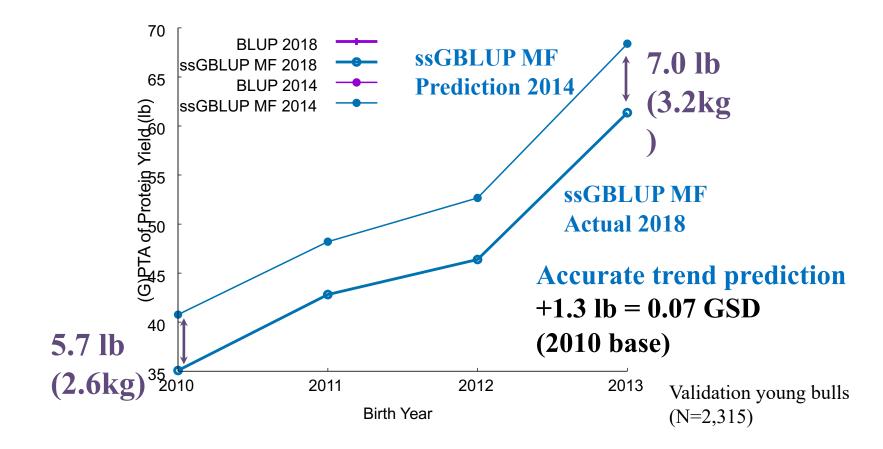
Genomic evaluation of US Holsteins

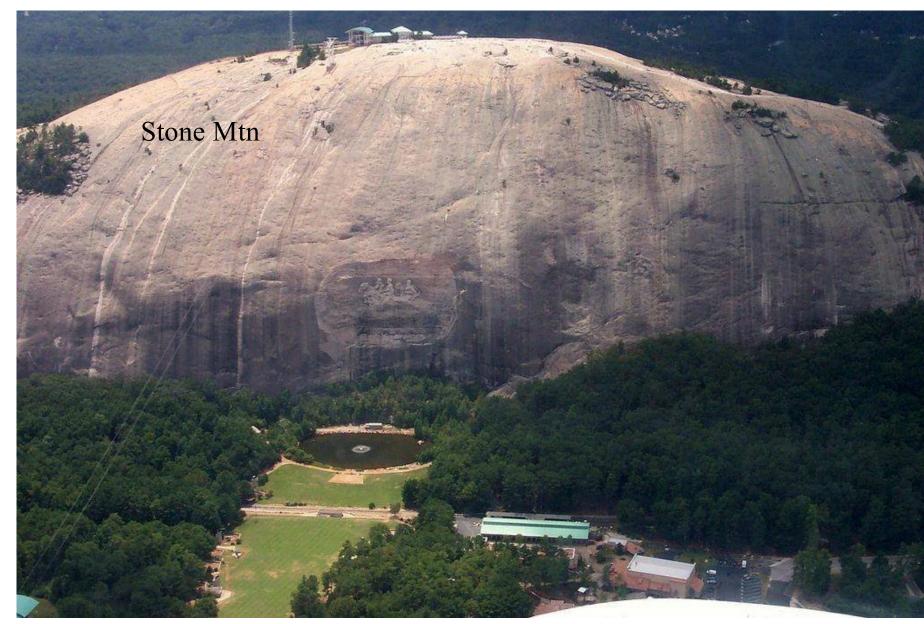
- ssGBLUP for 35 million US Holsteins (Masuda et al., 2017)
 - Protein
 - 2.3M genotypes of SNP60K
 - Computing time 6.5 h
- Unknown parent groups
 - Genomic
 - Metafounders

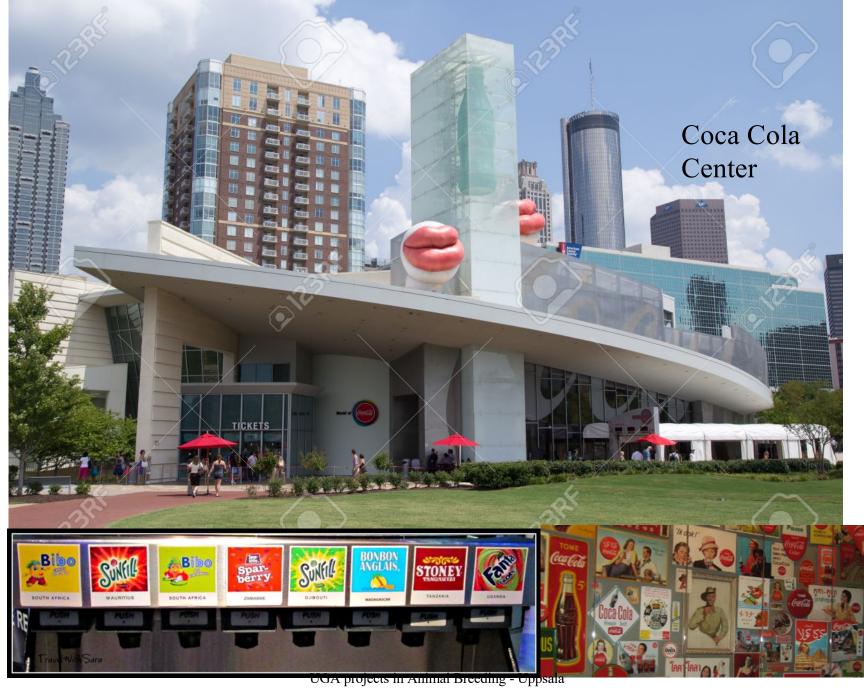
Genetic trend for genotyped bulls in 2014



Predicted and actual trends for bulls







ssGBLUP for Genome Wide Association Studies

- Large research interest in GWAS
- Limitations of Bayesian methods

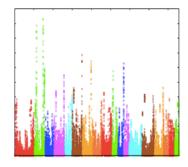
G=ZZ' unweighted genomic relationships G=ZDZ' weighted G

Genet. Res., Camb. (2012), 94, pp. 73–83. © Cambridge University Press 2012 doi:10.1017/S0016672312000274

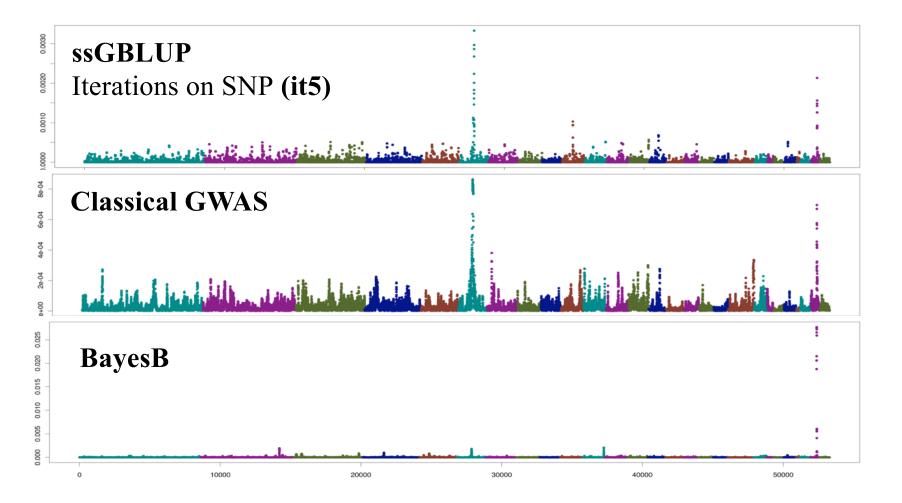
Genome-wide association mapping including phenotypes from relatives without genotypes

H. WANG^{1*}, I. MISZTAL¹, I. AGUILAR², A. LEGARRA³ AND W. M. MUIR⁴ ¹Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602-2771, USA ²Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, 90200 Canelones, Uruguay ³INRA, UR631 Station d'Amélioration Génétique des Animaux (SAGA), BP S2627, 32326 Castanet-Tolosan, France ⁴Department of Animal Science, Purdue University, West Lafayette, IN 47907-1151, USA

(Received 19 September 2011; revised 8 December 2011, and 9 March 2012; accepted 13 March 2012)



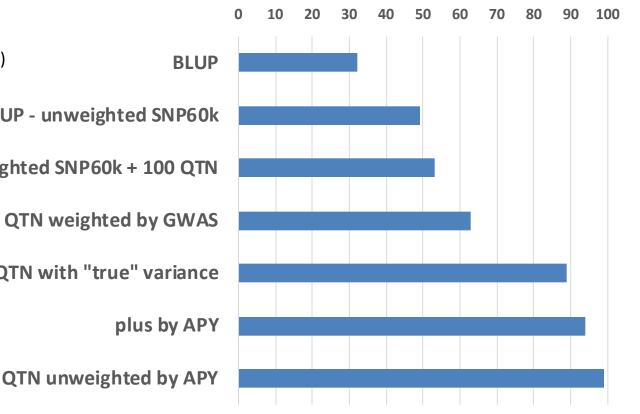
Comparison of Three Methods:



Inclusion of causative SNP information

- In dairy, results varied
 - No improvement in Dutch (Binsbergen, et al., 2015) or German Holsteins (Erbe et al., 2016)
 - Up to 5% improvement in Nordic/French (Brøndum et al.)
 - Up to 5% improvement in US Holsteins (Vanraden et al. (2017)
- In SNP BLUP, SNP effects regressed towards zero
- To include causative SNP:
 - Need location
 - need variance

ssGBLUP accuracies using SNP60K and 100 QTNs – simulation study



Fragomeni et al. (2017)

ssGBLUP - unweighted SNP60k

unweighted SNP60k + 100 QTN

SNP60k + 100 QTN weighted by GWAS

SNP60K + 100 QTN with "true" variance

only 100 QTN unweighted by APY

Use of causative variants and SNP weighting in a singlestep GBLUP context

Fragomeni BO¹, Lourenco DAL¹, Legarra A², Tooker ME³, VanRaden PM³, Misztal I¹

¹University of Georgia, Athens, USA

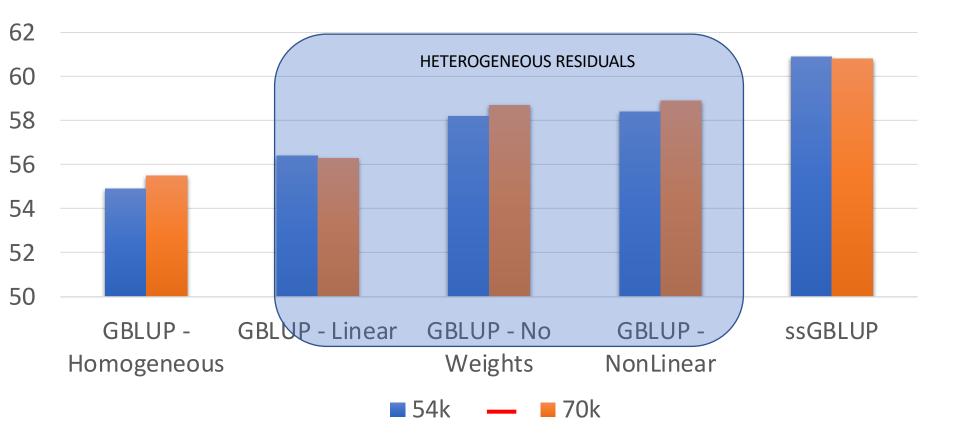
²INRA, Castanet-Tolosan, France

³AGIL ARS-USDA, Beltsville, USA

US Holstein data

- 4M records for Stature
- 3M Cows
- 4.6M Animals in pedigree
- 27k Genotyped Sires
- 54k SNP
- 54k SNP + 17k Causative Variants (VanRaden et al., 2017)

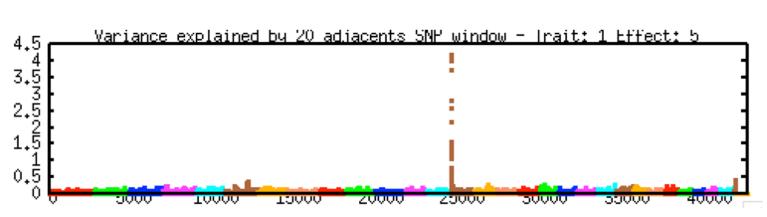
Including causative variants



SNP weighting/selection possibly artifact of inadequate modeling

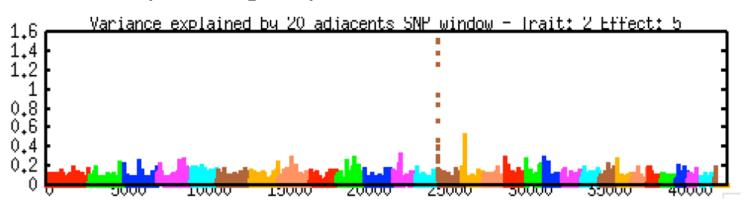
Can large QTL exist despite selection?

- Genetics and genomics of mortality in US Holsteins
- (Tokuhisa et al, 2014; Tsuruta et al., 2014)
- 6M records, SNP50k genotypes of 35k bulls

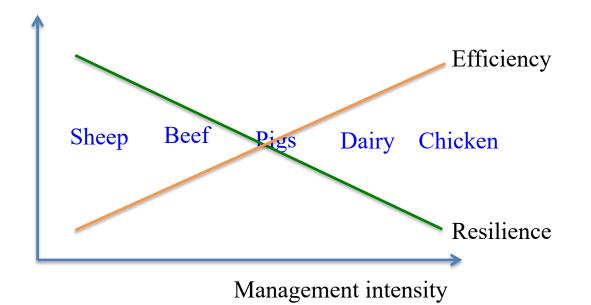


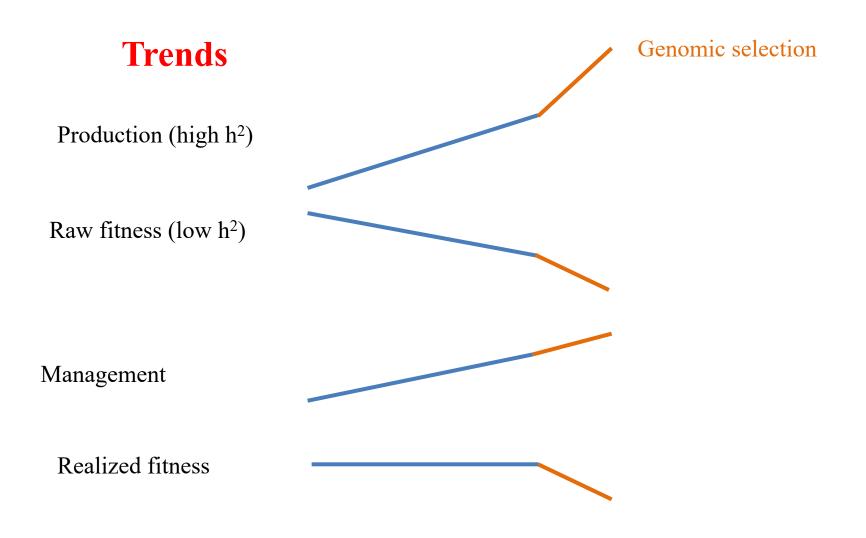
Milk – first parity

Mortality – first parity



Resilience/efficiency and management intensity

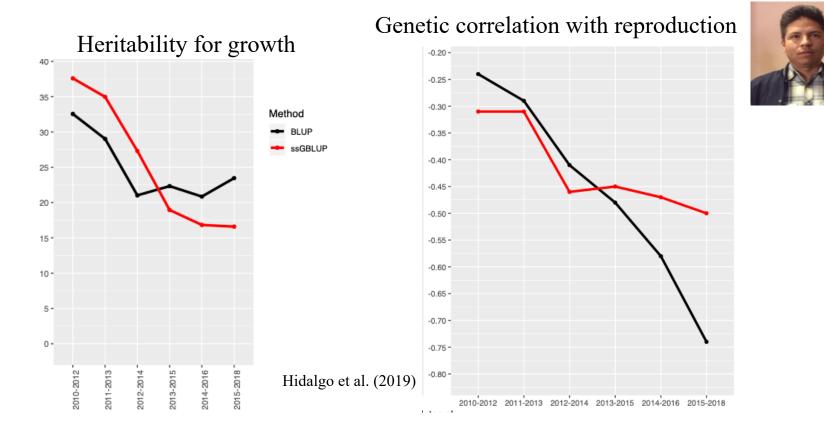




Parameter changes with genomic selection

- Better accuracy assuming 50% heritability for US Holsteins
- Bulmer effect?
- With changes, benefits below expectations
- Problem with estimating changes
 - Biases without genomic information
 - High cost with genomic evaluation

Changes in (co)variances in pigs due to genomic selection



Possibilities and challenges ahead

- Possibilities to create perfect genotype for each environment
- 30,000 genes and changing environment
- Selection on gene networks?
- Will selection on many genes create epistasis and nonlinearities?
- Perfect animal or unbalanced animal?

Conclusions

- Genomic selection relies on small effective population size
- Under genomic selection BLUP biased
- Single-step GBLUP standard and suitable for millions of genotypes
- Different results with small and large data
- UGA has access to data open to visitors

Animal Breeding and Genetics Group

http://nce.ads.uga.edu

Ignacy

Misztal

Shogo Tsuruta

lvan Pocrnic

Jorge Hidalgo

Matias Berman n

Ignacio Aguilar

Andres

Zulma Vitezic a

Daniela Lourenc o

Yutaka Masud a

Breno Fragomen i

B

Yvette

Steyn

Andre Garcia

Taylor Mcwhorthe r

Diogo Silva

Acknowledgements

National Institute of Food and Aariculture

