Data simulation (including genomics) QMSim software Zulma G.Vitezica[†] † INRA-INPT, GenPhySE, Castanet-Tolosan 31326 France zulma.vitezica@ensat.fr ## **QMSim:** why to use it? - ✓ To simulate data mimicking livestock species - ✓ Phenotypes, pedigree, genotypes - ✓ A wide variety of genome architectures - ✓ From single-locus to infinitesimal model - ✓ It is a user-friendly tool for simulating data - ✓ Computationally efficient in terms of time and memory ### **QMSim**[†]: where to find it? †Sargolzaei & Schenkel (2009), Bioinformatics 25:680-681. The code is written in C++ language Executable files are freely available for Windows, Linux, and Mac at: (Last update: July 12, 2013) http://www.aps.uoguelph.ca/~msargol/qmsim/ ### How the simulation is carried out? #### In 2 steps: - **✓** First step: **Historical Population** - to create initial LD - to establish mutation-drift equilibrium - expansion and contraction of the population - **✓** Second step: Recent Population - Pedigree - Phenotypes - Genotypes ### Parameter file - ✓ It must be in ASCII format - ✓ It consists of **five** main sections - ✓ The order of commands within each section is not important - ✓ All commands end with a semicolon - ✓ No semicolon → error message and program exits ``` /******************* Global parameters title = "Example 1 - 10k SNP panel . . . ; /******************* Historical population begin hp; end_hp; Populations begin_pop = "p1"; end pop; Genome begin genome; end genome; Output options ***************************** begin output; end output; ``` ### 1. Global parameters section The random number generator (RNG*) requires a seed file. If it is not specified \rightarrow RNG will be seeded from the system clock For each run the initial seed numbers will be backed up in output folder \rightarrow This allows to repeat the run! Parameter file: ex01.prm Output folder: r_ex01/ | Example 1 - 10k SNP panel | | Initial seed is backed up in [r_ex01/seed]. | parameter file is backed up in [r_ex01/ex01.prm]. ^{*} Mersenne Twister algorithm (Matsumoto & Nishimura, 1998) # 1. Global parameters section # 1. Global parameters section When males do not have records, but selection or culling are based on ``` EBVs → Ok Phenotypes → Males will be randomly selected or culled ``` ### Parameter file ✓ It consists of **five** main sections ``` /******************* Global parameters title = "Example 1 - 10k SNP panel . . . ; Historical population begin hp; end hp; /*************************** Populations begin_pop = "p1"; end pop; Genome ****************************** begin genome; end genome; /**************************** Output options begin output; end output; ``` To create initial LD - Evolutionary forces: mutation and drift (no selection, no migration) - Random mating: union of gametes randomly sampled from the male and female gametic pools - Discrete generations - Only a single historical population ``` Historical population Historical generation sizes begin_hp; hg_size = 420 [0] 420 [200]; Constant size nmlhg = 20; end_hp; v1 the historical generation size Range: 2 – 100,000 v2 the historical generation number Range: 0 – 150,000 hg_size = v1 [v2] ``` Historical bottleneck or expansion can be simulated Gradual decrease in size from 2000 to 200 Expansion in the last historical generation from 100 to 3000 **LD** in livestock extends over longer distances than in humans ``` '********************************** Historical population Number of begin hp; males Default : equal number of males and females hg size = 2000 [0] 200 [1000]; nmfhq = 40; ← nmfhg → first historical generation end hp; *********** Historical population Sex ratio will be constant across historical generations. It can be changed in the last generation begin hp; hg size = 2000 [0] 200 [1000]; nmlhg → last historical generation - → nmlhg = 40; end hp; ``` ### Parameter file ✓ It consists of **five** main sections ``` /******************* Global parameters title = "Example 1 - 10k SNP panel . . . ; Historical population begin hp; end hp; /*************************** Populations begin_pop = "p1"; end pop; Genome ****************************** begin genome; end genome; /************************** Output options begin output; end output; ``` Multiple recent populations can be analyzed separately (one pedigree for each population) or jointly (by creating one pedigree for all populations) for inbreeding and EBV #### Choosing founders for a population ``` Parameters for the ********** founders ** Populations ********** begin_pop = "line1"; begin founder; male [n = 20, pop = "hp", select = tbv /h]; female [n = 400, pop = "hp", select = tbv /h]; end founder: Type of selection Number of It indicates from male/female select: rnd (default), which population the phen, tbv and ebv to be selected base animals must /I: to select low values be selected /h: to select high values ``` **hp:** historical population (last historical generation) ``` Choosing founders for a population Populations for F2 design begin_pop =("line1") begin founder; male [n = 20, pop = "hp", select = tbv /h]; female [n = 400, pop = "hp", select = tbv /h]; end founder; ng = 20; //Number of generations end pop; begin pop = ("line2"; begin founder; male [n = 20, pop = "hp", select = tbv /l]; female [n = 400, pop = "hp", select = tbv /l]; end founder; Crossing between ng = 20; //Number of generations populations/lines end_pop; is allowed //Cross between line1 and line 2 to generate F2 begin pop = "cross"; begin founder; male [n = 20, pop = "line1", gen = 20]; female [n = 400, pop \neq "line2"], gen = 20]; end founder; ng = 2; //Number of generations ``` ``` Choosing founders for a population Populations for migration begin pop = "line1"; begin_founder, male [n = 20, pop = "hp", select = tbv /h]; female [n = 400, pop = "hp", select = tbv /h]; end founder; ng = 20; //Number of generations end_pop; begin_pop = ("line2" begin_founder, male [n = 20, pop = "hp", select = tbv /l]; female [n = 400, pop = "hp", select = tbv /l]; Migration can be end founder; simulated ng = 20; //Number of generations end pop; //2 males and 10 females from line 2 immigrate to line 1 begin pop = "line1 c"; begin founder; [n = 8, pop = [line1], gen = 10]; male \sqrt{[n = 2, pop = "line2"]} gen = 10]; //2 male immigrants female [n = 90, pop = "line1", gen = 10]; female [n = 10, pop = "line2", gen = 10]; //10 female immigrants end founder; ng = 5; //Number of generations ``` #### Litter size ``` Populations begin pop = "p1"; begin founder; Is: Probability of male [n = the litter sizes Is: number of female [n = 250] progeny per dam end founder; //Litter size = 1 2 [0.2]; //Proportion of male progeny pmp = 0.5; //Number of generations = 10; ng //Mating design md = p assort/ebv; //Replacement ratio for sires sr = 0.4; dr = 0.2; //Replacement ratio for dams sd = ebv /h; //Selection design cd = phen/l; //Culling design ebv est = blup; ``` #### Sex ratio ``` Populations ********** pmp: 0.5 /fix litter begin_pop = "p1"; Sex ratio will be fixed within begin founder; litters (progeny of a dam) pmp: range male [n = 50. 0-1, default is female [n = 2500, DOD equal to 0.5 end founder; //Litter size pmp = 0.5; //Proportion of male progeny //Number of generations = 10; ng md = p assort/ebv; //Mating design //Replacement ratio for sires sr = 0.4; dr = 0.2; //Replacement ratio for dams sd = ebv /h; //Selection design cd = phen/l; //Culling design ebv est = blup; ``` #### **Matting design** on phen, ebv or tbv ``` rnd (default), rnd_ug (a dam k*************** can mate with more than one llations sire in each generation), p_assort (similarity), n_assort (dissimilarity), minf and maxf (inbreeding is minimized in the 50, pop = "hp"]; = 2500, pop = "hp"]; next generation) [0.2]; //Litter size //Proportion of male progeny pmp //Number of generations ng = p assort/ebv; //Mating design md //Replacement ratio for sires = 0.4: sr dr = 0.2; KReplacement ratio for dams sd = ebv /h; oction design cd = phen/l; Assortative mating base ``` ebv_est = blup; #### Replacement ``` ********** Populations boain pop = "p1"; founder; sr: 40% of sires le [n = 50, pop = "hp"]; will be replaced in male [n = 2500, pop = "hp"]; all generations ounder; = 1 2 [0.2]; //Litter size //Proportion of male progeny = 0.5: //Number of generations ng p assort/ebv; //Mating design //Replacement ratio for sires //Replacement ratio for dams //Selection design sd = ebv /h = phen/l; √Culling design cd ebv est > sr: 0.4 [1] 0.5 [5] ``` **sr:** 1, discrete generations (default) 40% of sires will be culled for generation 1 to 5, and 50% from generation 5 to last generation estimation method # Selection and culling designs high values ``` *********** Populations begin pop = "p1"; begin founder; male [n = 50, pop = "hp"]; female [n = 2500, pop = "hp"]; end founder; rnd, phen, tbv ebv ls = 1 2 [0.2]; //Litter size and age (only for //Proportion of male progeny pmp = 0.5; culling) //Number of generations ng = 10; md = p_assort/ebv; //Mating design sr = 0.4; //Replacement ratio for sires dr = 0.2; //Replacement ratio for dams sd = ebv /h; //Selection design cd = phen/l; //Culling design ebv_est = blup; /I or /h to select low or Breeding value ``` ``` k*************************** Populations ** begin pop = "p1"; begin founder; male [n = 20, pop = "hp"]; female [n = 400, pop = "hp"]; end founder; ls = 2; p1_mrk_007.txt pmp = 0.5 / fix; ng = 10; p1_qtl_007.txt begin popoutput; Population specific data: parameters for stat; saving outputs genotype /snp code /gen 8 9 10; end popoutput; end pop; ``` data: save individual's data except their genopype (File name: 'population name'_data_'replicate number'.txt stat: save brief statistic on simulated data genotype: save genotype data ### Parameter file ✓ It consists of **five** main sections ``` /******************* Global parameters title = "Example 1 - 10k SNP panel . . . ; Historical population begin hp; end hp; /*************************** Populations ****************************** begin_pop = "p1"; end pop; Genome ****************************** begin genome; end genome; /************************** Output options begin output; end output; ``` ### 4. Genome section #### **Marker information** #### Example – 10k SNP panel ``` Number of chromosomes: 10 Genome Samples from ********** chrlen: range 1-5,000 cM uniform distribution beg<u>in</u> genome; begin_chr = 10; in each replicate chrlen = 100; < //Chromosome length nmloci = 1000; //Number of markers All marker loci will mpos = rnd; //Marker positions have 2 alleles nma = all 2; //Number of marker alleles maf = eql; //Marker allele frequencies In the first historical nqloci = 25; //Number of QTL qpos = rnd; //QTL positions generation, then drift nqa = all 2; //Number of QTL alleles and mutation qaf = eql; //QTL allele frequencies = rndg 0.4; //QTL allele effects qae end chr; = 2.5e-5 /recurrent; //Marker mutation rate mmutr = 2.5e-5; //QTL mutation rate gmutr r_mpos_g; // Randomize marker positions across genome r_qpos_g; // Randomize QTL positions across genome end genome; ``` ### 4. Genome section #### **QTL** information #### Example – 10k SNP panel ``` Genome Samples from nqloci: range 1-50,000 on uniform distribution the chromosome in each replicate chrlen = Chromosom 4th nmloci = //Number arkers Nb of QTL alleles in the first ositions //Mark mpos = rn historical generation (all: //Numer of marker al nma = al same number) maf arker allele freque = eq (: nqloci = 25; //Number of OTL = rnd; //QTL positions qpos Equal allele = all 2; //Number of QTL alleles nqa frequencies in = eql; //QTL allele frequencies qaf the first = rndg 0.4; //QTL allele effects qae end_chr; historical mmutr = 2.5e-5 generation = 2.5e-5; It will be sampled from gamma qmutr // Rar distribution with shape 0.4 r_mpos_g; home // Rand r_qpos_g; end genome; ``` ``` More genome information Genome ************************************ Example – 10k SNP panel begin genome; begin chr = 10; mosome length In recurrent mutation, no new er of markers allele is generated. er positions Default: infinite-allele model SNP recurrent mutations are er of = eql Marker al generally very rare and no evidence maf Number of nqloci = 25; that mutation contributes to erosion of qpos = rnd; QTL posit LD between SNP (Ardlie et al., 2002) nqa = all 2; Number of VIL a qaf = eql; //QTL allele f //QTL allele effe gae = rndg 0.4 end chr; mmutr = 2.5e-5 /recurrent; //Marker mutation rate qmutr = 2.5e-5; //QTL mutation rate r_mpos_g; // Randomize marker positions across genome // Randomize QTL positions across genome r_qpos_g; end genome; Other possibilities: Missing marker/QTL genotypes Genotyping errors can be simulated (marker/QTL) ``` ### Parameter file ✓ It consists of **five** main sections ``` /******************* Global parameters title = "Example 1 - 10k SNP panel . . . ; Historical population begin hp; end hp; /*************************** Populations begin pop = "p1"; end pop; Genome ****************************** begin genome; end genome; Output options begin output; end output; ``` ## 5. Output section ``` /*************** ** Output options ** **************** begin_output; linkage_map; allele_effect; end_output; Save allele effects end_output; ``` ### QMSim outputs ``` Populations begin pop = "p1"; begin founder; male [n = 20, pop = "hp"]; female [n = 400, pop = "hp"]; end founder; ls = 2; pmp = 0.5 / fix; p1 data 001.txt nq = 10; begin popoutput; data; stat; genotype /snp code /gen 8 9 10; end_popoutput; end_pop; ``` ``` Example 1 Sex MPrg NFPrg F Progeny Sire Dam Homo Phen Res Polygene 33 0.000000 \ 0.696797 \ +1.323314 \ +0.331291 \ -0.000000 \ +0.992023 21 0.000000 \ 0.695996 + 0.933861 + 1.323803 - 0.000000 - 0.389942 11 0.000000 \ 0.673574 + 0.903691 - 0.106867 - 0.000000 + 1.010557 20 20 0.000000 0.685385 +0.502346 +0.068033 -0.000000 +0.434313 18 0.000000 0.696096 -0.038755 +0.870122 +0.000000 -0.908877 11 0.000000 \ 0.692092 \ +2.246078 \ +1.202401 \ +0.000000 \ +1.043677 34 0.000000 \ 0.704304 \ +1.312932 \ +1.393522 \ +0.000000 \ -0.080591 22 18 0.000000 \ 0.692793 \ +1.375544 \ +1.060612 \ +0.000000 \ +0.314932 ``` # p1_**stat**_001.txt ``` Example 1 ----- Inbreeding ------ Inbred All SD Mean Gen. Mean No. SD 0.0000 0.0000 0.0000 0.0000 0 0 0.0000 0.0000 0.0000 0.0000 ----- Homozygosity ------ Mean SD Gen. 0.01207245 0 0.68254159 0.68200626 0.01103250 ----- Phenotype ----- Gen. Mean SD 0.08440969 1.01093563 0 0.04504056 1.02152016 Gen. Mean SD 0.04889285 0 0.56092140 -0.00533798 0.55392545 ``` | Brief Structure | | | | | | | | | | | |-----------------|---------|----------|------|----------|--------|----------|------|--------|------|--------| | Gen. | Progeny | Male% | Male | Selected | Female | Selected | Sire | Culled | Dam | Culled | | 0 | 420 | 0.047619 | 20 | 0 | 400 | 0 | 0 | 0 | 0 | 0 | | 1 | 400 | 0.500000 | 200 | 8 | 200 | 80 | 20 | 8 | 400 | 80 | | 2 | 400 | 0.500000 | 200 | 8 | 200 | 80 | 20 | 8 | 400 | 80 | | 3 | 400 | 0.500000 | 200 | 8 | 200 | 80 | 20 | 8 | 400 | 80 | | 4 | 400 | 0.500000 | 200 | 8 | 200 | 80 | 20 | 8 | 400 | 80 | | 5 | 400 | 0.500000 | 200 | 0 | 200 | 0 | 20 | 0 | 400 | 0 | | 0verall | 2420 | 0.421488 | 1020 | 32 | 1400 | 320 | 100 | 32 | 2000 | 320 | ``` p1_mrk_001.txt begin_popoutput; data; stat; genotype /snp_code /gen 4 5; end_popoutput; end_pop; ``` ``` Output options ** ** ********** Marker and QTL linkage map begin_output; linkage_map; < hp_stat; end_output; Example 1 QTL linkage map Chr Position ID Q1 8.88876 Q2 13.35024 Q3 17.76099 Q4 22.12918 Q5 29,68482 Q6 37.76335 Q7 43.84122 Q8 46.93041 Q9 47.16755 Q10 48.56634 ``` ``` ** Output options *********** begin output; linkage map; Save allele effects allele effect; ← end output; Example 1 Allele:Effect ... ID Chr Q1 1: 0.066403 2:-0.001068 Q2 1:-0.050405 2: 0.031267 Q3 1:-0.006917 2: 0.009631 Q4 1:-0.000543 2: 0.000171 Q5 1:-0.001498 2: 0.004858 Q6 1: 0.001299 2:-0.000535 Q7 2: 0.000000 Q8 1:-0.004849 2: 0.003374 Q9 2: 0.018606 1:-0.014103 Q10 1: 0.048198 2:-0.006161 Q11 1: 0.000189 2:-0.001423 ``` ### Conclusion To create LD Population expansion or bottleneck QTL + polygenic Dense marker map Multiple recent populations / lines Sex limited traits Crossing between populations / lines QMSim A single historical population No fixed effects Only additive effects ### Genomic selection: validation ### Example of simulation