Data simulation (including genomics) QMSim software

Zulma G.Vitezica[†]

† INRA-INPT, GenPhySE, Castanet-Tolosan 31326 France

zulma.vitezica@ensat.fr

QMSim: why to use it?

- ✓ To simulate data mimicking livestock species
 - ✓ Phenotypes, pedigree, genotypes
- ✓ A wide variety of genome architectures
 - ✓ From single-locus to infinitesimal model
- ✓ It is a user-friendly tool for simulating data
- ✓ Computationally efficient in terms of time and memory

QMSim[†]: where to find it?

†Sargolzaei & Schenkel (2009), Bioinformatics 25:680-681.

The code is written in C++ language

Executable files are freely available for Windows, Linux, and Mac at: (Last update: July 12, 2013)

http://www.aps.uoguelph.ca/~msargol/qmsim/

How the simulation is carried out?

In 2 steps:

- **✓** First step: **Historical Population**
 - to create initial LD
 - to establish mutation-drift equilibrium
 - expansion and contraction of the population
- **✓** Second step: Recent Population
 - Pedigree
 - Phenotypes
 - Genotypes

Parameter file

- ✓ It must be in ASCII format
- ✓ It consists of **five** main sections
- ✓ The order of commands within each section is not important
- ✓ All commands end with a semicolon
- ✓ No semicolon → error message and program exits

```
/*******************
    Global parameters
title = "Example 1 - 10k SNP panel
. . . ;
/*******************
   Historical population
begin hp;
end_hp;
Populations
begin_pop = "p1";
end pop;
Genome
begin genome;
end genome;
     Output options
*****************************
begin output;
end output;
```

1. Global parameters section

The random number generator (RNG*) requires a seed file. If it is not specified \rightarrow RNG will be seeded from the system clock For each run the initial seed numbers will be backed up in output folder \rightarrow This allows to repeat the run!

Parameter file: ex01.prm

Output folder: r_ex01/

| Example 1 - 10k SNP panel |
| Initial seed is backed up in [r_ex01/seed].
| parameter file is backed up in [r_ex01/ex01.prm].

^{*} Mersenne Twister algorithm (Matsumoto & Nishimura, 1998)

1. Global parameters section

1. Global parameters section

When males do not have records, but selection or culling are based on

```
EBVs → Ok

Phenotypes → Males will be randomly selected or culled
```

Parameter file

✓ It consists of **five** main sections


```
/*******************
    Global parameters
title = "Example 1 - 10k SNP panel
. . . ;
Historical population
begin hp;
end hp;
/***************************
      Populations
begin_pop = "p1";
end pop;
Genome
******************************
begin genome;
end genome;
/****************************
      Output options
begin output;
end output;
```

To create initial LD

- Evolutionary forces: mutation and drift (no selection, no migration)
- Random mating: union of gametes randomly sampled from the male and female gametic pools
- Discrete generations
- Only a single historical population

```
Historical population
Historical
generation
  sizes
                           begin_hp;
                            hg_size = 420 [0]
420 [200];
                                                              Constant size
                               nmlhg = 20;
                           end_hp;
                               v1 the historical generation size
                             Range: 2 – 100,000

v2 the historical generation number Range: 0 – 150,000
     hg_size = v1 [v2]
```

Historical bottleneck or expansion can be simulated

Gradual decrease in size from 2000 to 200

Expansion in the last historical generation from 100 to 3000

LD in livestock extends over longer distances than in humans

```
'**********************************
                Historical population
           Number of
          begin hp;
 males
                               Default : equal number of males and females
             hg size = 2000 [0]
                       200 [1000];
            nmfhq = 40; ← nmfhg → first historical generation
          end hp;
                              ***********
                                  Historical population
Sex ratio will be constant across
                              historical generations. It can be
 changed in the last generation
                             begin hp;
                               hg size = 2000 [0]
                                         200 [1000];
nmlhg → last historical generation -
                              → nmlhg = 40;
                             end hp;
```

Parameter file

✓ It consists of **five** main sections


```
/*******************
    Global parameters
title = "Example 1 - 10k SNP panel
. . . ;
Historical population
begin hp;
end hp;
/***************************
      Populations
begin_pop = "p1";
end pop;
Genome
******************************
begin genome;
end genome;
/**************************
      Output options
begin output;
end output;
```

Multiple recent populations can be analyzed separately (one pedigree for each population) or jointly (by creating one pedigree for all populations) for inbreeding and EBV

Choosing founders for a population

```
Parameters for the
     **********
                                            founders
 **
            Populations
 **********
begin_pop = "line1";
   begin founder;
      male [n = 20, pop = "hp", select = tbv /h];
      female [n = 400, pop = "hp", select = tbv /h];
   end founder:
                                              Type of selection
         Number of
                       It indicates from
        male/female
                                                select: rnd (default),
                     which population the
                                                phen, tbv and ebv
       to be selected
                      base animals must
                                               /I: to select low values
                         be selected
                                               /h: to select high values
```

hp: historical population (last historical generation)

```
Choosing founders for a population
          Populations
                                                   for F2 design
 begin_pop =("line1")
  begin founder;
     male [n = 20, pop = "hp", select = tbv /h];
     female [n = 400, pop = "hp", select = tbv /h];
  end founder;
  ng = 20; //Number of generations
end pop;
begin pop = ("line2";
  begin founder;
     male [n = 20, pop = "hp", select = tbv /l];
     female [n = 400, pop = "hp", select = tbv /l];
  end founder;
                                               Crossing between
  ng = 20; //Number of generations
                                               populations/lines
end_pop;
                                                  is allowed
//Cross between line1 and line 2 to generate F2
begin pop = "cross";
  begin founder;
     male [n = 20, pop = "line1", gen = 20];
     female [n = 400, pop \neq "line2"], gen = 20];
  end founder;
  ng = 2;
          //Number of generations
```

```
Choosing founders for a population
          Populations
                                                          for migration
 begin pop = "line1";
  begin_founder,
     male [n = 20, pop = "hp", select = tbv /h];
     female [n = 400, pop = "hp", select = tbv /h];
  end founder;
  ng = 20; //Number of generations
end_pop;
begin_pop = ("line2"
  begin_founder,
     male [n = 20, pop = "hp", select = tbv /l];
     female [n = 400, pop = "hp", select = tbv /l];
                                                       Migration can be
  end founder;
                                                           simulated
  ng = 20; //Number of generations
end pop;
//2 males and 10 females from line 2 immigrate to line 1
begin pop = "line1 c";
  begin founder;
           [n = 8, pop = [line1], gen = 10];
     male \sqrt{[n = 2, pop = "line2"]} gen = 10]; //2 male immigrants
     female [n = 90, pop = "line1", gen = 10];
     female [n = 10, pop = "line2", gen = 10]; //10 female immigrants
  end founder;
  ng = 5; //Number of generations
```

Litter size

```
Populations
             begin pop = "p1";
               begin founder;
                                 Is: Probability of
                  male [n =
                                  the litter sizes
 Is: number of
                  female [n = 250]
progeny per dam
               end founder;
                                    //Litter size
                  = 1 2 [0.2];
                                    //Proportion of male progeny
               pmp = 0.5;
                                    //Number of generations
                   = 10;
               ng
                                    //Mating design
               md = p assort/ebv;
                                    //Replacement ratio for sires
               sr = 0.4;
               dr = 0.2;
                                    //Replacement ratio for dams
               sd = ebv /h;
                                    //Selection design
               cd = phen/l;
                                    //Culling design
               ebv est = blup;
```

Sex ratio

```
Populations
           **********
                                       pmp: 0.5 /fix litter
          begin_pop = "p1";
                                   Sex ratio will be fixed within
            begin founder;
                                    litters (progeny of a dam)
pmp: range
               male [n =
                             50.
0-1, default is
               female [n = 2500,
                                 DOD
equal to 0.5
            end founder;
                                  //Litter size
            pmp = 0.5;
                                  //Proportion of male progeny
                                  //Number of generations
                = 10;
            ng
            md = p assort/ebv;
                                 //Mating design
                                  //Replacement ratio for sires
            sr = 0.4;
            dr = 0.2;
                                  //Replacement ratio for dams
            sd = ebv /h;
                                  //Selection design
            cd = phen/l;
                                  //Culling design
            ebv est = blup;
```

Matting design

on phen, ebv or tbv

```
rnd (default), rnd_ug (a dam
                            k***************
can mate with more than one
                            llations
  sire in each generation),
                            p_assort (similarity), n_assort
(dissimilarity), minf and maxf
(inbreeding is minimized in the
                               50, pop = "hp"];
                              = 2500, pop = "hp"];
     next generation)
                           [0.2];
                                       //Litter size
                                       //Proportion of male progeny
                pmp
                                       //Number of generations
                ng
                    = p assort/ebv;
                                       //Mating design
                md
                                       //Replacement ratio for sires
                    = 0.4:
                sr
                dr = 0.2;
                                        KReplacement ratio for dams
                sd = ebv /h;
                                            oction design
                cd = phen/l;
                                         Assortative mating base
```

ebv_est = blup;

Replacement

```
**********
                  Populations
        boain pop = "p1";
               founder;
sr: 40% of sires
               le [n = 50, pop = "hp"];
will be replaced in
               male [n = 2500, pop = "hp"];
 all generations
               ounder;
              = 1 2 [0.2];
                             //Litter size
                               //Proportion of male progeny
              = 0.5:
                             //Number of generations
          ng
              p assort/ebv; //Mating design
                               //Replacement ratio for sires
                               //Replacement ratio for dams
                               //Selection design
          sd = ebv /h
              = phen/l;
                                √Culling design
          cd
          ebv est >
                                 sr: 0.4 [1] 0.5 [5]
```

sr: 1, discrete generations (default)

40% of sires will be culled for generation 1 to 5, and 50% from generation 5 to last generation

estimation method

Selection and culling designs

high values

```
***********
                      Populations
             begin pop = "p1";
               begin founder;
                 male [n = 50, pop = "hp"];
                 female [n = 2500, pop = "hp"];
               end founder;
rnd, phen, tbv ebv
               ls = 1 2 [0.2]; //Litter size
and age (only for
                                //Proportion of male progeny
               pmp = 0.5;
    culling)
                                //Number of generations
               ng = 10;
               md = p_assort/ebv; //Mating design
               sr = 0.4;
                            //Replacement ratio for sires
               dr = 0.2;
                                //Replacement ratio for dams
               sd = ebv /h;
                                   //Selection design
               cd = phen/l;
                                   //Culling design
               ebv_est = blup;
                                      /I or /h to
                                     select low or
             Breeding value
```

```
k***************************
                                Populations
                                                  **
                      begin pop = "p1";
                        begin founder;
                           male [n = 20, pop = "hp"];
                           female [n = 400, pop = "hp"];
                        end founder;
                        ls = 2;
                                              p1_mrk_007.txt
                        pmp = 0.5 / fix;
                        ng = 10;
                                                p1_qtl_007.txt
                        begin popoutput;
Population specific
                             data:
  parameters for
                             stat;
  saving outputs
                             genotype /snp code /gen 8 9 10;
                        end popoutput;
                     end pop;
```

data: save individual's data except their genopype (File name: 'population name'_data_'replicate number'.txt

stat: save brief statistic on simulated data

genotype: save genotype data

Parameter file

✓ It consists of **five** main sections


```
/*******************
     Global parameters
title = "Example 1 - 10k SNP panel
. . . ;
Historical population
begin hp;
end hp;
/***************************
       Populations
******************************
begin_pop = "p1";
end pop;
Genome
******************************
begin genome;
end genome;
/**************************
      Output options
begin output;
end output;
```

4. Genome section

Marker information

Example – 10k SNP panel

```
Number of chromosomes: 10
            Genome
                                                     Samples from
 **********
                       chrlen: range 1-5,000 cM
                                                   uniform distribution
beg<u>in</u> genome;
  begin_chr = 10;
                                                    in each replicate
     chrlen = 100; <
                      //Chromosome length
     nmloci = 1000; //Number of markers
                                                    All marker loci will
     mpos = rnd; //Marker positions
                                                      have 2 alleles
     nma = all 2; //Number of marker alleles
     maf = eql; //Marker allele frequencies
                                                   In the first historical
     nqloci = 25;  //Number of QTL
     qpos = rnd; //QTL positions
                                                  generation, then drift
     nqa = all 2; //Number of QTL alleles
                                                     and mutation
     qaf = eql; //QTL allele frequencies
            = rndg 0.4; //QTL allele effects
     qae
  end chr;
            = 2.5e-5 /recurrent; //Marker mutation rate
  mmutr
            = 2.5e-5; //QTL mutation rate
  gmutr
   r_mpos_g; // Randomize marker positions across genome
   r_qpos_g; // Randomize QTL positions across genome
end genome;
```

4. Genome section

QTL information

Example – 10k SNP panel

```
Genome
                                       Samples from
   nqloci: range 1-50,000 on
                                     uniform distribution
       the chromosome
                                      in each replicate
      chrlen =
                           Chromosom
                                          4th
      nmloci =
                         //Number
                                      arkers
                                                  Nb of QTL alleles in the first
                                  ositions
                         //Mark
      mpos
              = rn
                                                    historical generation (all:
                         //Numer of marker al
      nma
             = al
                                                        same number)
      maf
                           arker allele freque
              = eq (:
      nqloci = 25;
                         //Number of OTL
              = rnd;
                        //QTL positions
      qpos
                                                                 Equal allele
             = all 2; //Number of QTL alleles
      nqa
                                                                frequencies in
              = eql;
                             //QTL allele frequencies
      qaf
                                                                   the first
              = rndg 0.4;
                             //QTL allele effects
      qae
   end_chr;
                                                                   historical
   mmutr
              = 2.5e-5
                                                                  generation
              = 2.5e-5;
                           It will be sampled from gamma
   qmutr
                 // Rar
                             distribution with shape 0.4
   r_mpos_g;
                                                            home
                 // Rand
   r_qpos_g;
end genome;
```

```
More genome information
             Genome
 ************************************
                                       Example – 10k SNP panel
begin genome;
   begin chr = 10;
                             mosome length
  In recurrent mutation, no new
                             er of markers
      allele is generated.
                             er positions
   Default: infinite-allele model
                                         SNP recurrent mutations are
                          er of
             = eql
                         Marker al generally very rare and no evidence
      maf
                         Number of
      nqloci = 25;
                                     that mutation contributes to erosion of
      qpos = rnd;
                         QTL posit
                                     LD between SNP (Ardlie et al., 2002)
      nqa = all 2;
                          Number of VIL a
      qaf = eql;
                           //QTL allele f
                            //QTL allele effe
      gae
             = rndg 0.4
   end chr;
   mmutr
           = 2.5e-5 /recurrent; //Marker mutation rate
   qmutr = 2.5e-5;
                                   //QTL mutation rate
   r_mpos_g; // Randomize marker positions across genome
                // Randomize QTL positions across genome
   r_qpos_g;
end genome;
                Other possibilities:
                    Missing marker/QTL genotypes
                    Genotyping errors can be simulated (marker/QTL)
```

Parameter file

✓ It consists of **five** main sections

```
/*******************
    Global parameters
title = "Example 1 - 10k SNP panel
. . . ;
Historical population
begin hp;
end hp;
/***************************
      Populations
begin pop = "p1";
end pop;
Genome
******************************
begin genome;
end genome;
Output options
begin output;
end output;
```


5. Output section

```
/***************

** Output options **

****************
begin_output;

linkage_map;
allele_effect;
end_output;
Save allele effects
end_output;
```

QMSim outputs

```
Populations
                      begin pop = "p1";
                        begin founder;
                          male [n = 20, pop = "hp"];
                          female [n = 400, pop = "hp"];
                        end founder;
                        ls = 2;
                        pmp = 0.5 / fix;
p1 data 001.txt
                        nq = 10;
                        begin popoutput;
                            data;
                            stat;
                            genotype /snp code /gen 8 9 10;
                       end_popoutput;
                     end_pop;
```

```
Example 1
                                Sex MPrg NFPrg F
Progeny Sire
                 Dam
                                                            Homo
                                                                      Phen
                                                                                 Res
                                                                                            Polygene
                                    33
                                                  0.000000 \ 0.696797 \ +1.323314 \ +0.331291 \ -0.000000 \ +0.992023
                                    21
                                                  0.000000 \ 0.695996 + 0.933861 + 1.323803 - 0.000000 - 0.389942
                                           11
                                                  0.000000 \ 0.673574 + 0.903691 - 0.106867 - 0.000000 + 1.010557
                                    20
                                           20
                                                  0.000000 0.685385 +0.502346 +0.068033 -0.000000 +0.434313
                                    18
                                                  0.000000 0.696096 -0.038755 +0.870122 +0.000000 -0.908877
                                    11
                                                  0.000000 \ 0.692092 \ +2.246078 \ +1.202401 \ +0.000000 \ +1.043677
                                    34
                                                  0.000000 \ 0.704304 \ +1.312932 \ +1.393522 \ +0.000000 \ -0.080591
                                    22
                                           18
                                                  0.000000 \ 0.692793 \ +1.375544 \ +1.060612 \ +0.000000 \ +0.314932
```

p1_**stat**_001.txt

```
Example 1
           ----- Inbreeding ------
                 Inbred
                            All
                       SD Mean
Gen.
                Mean
         No.
                                     SD
              0.0000 0.0000 0.0000 0.0000
0
           0
              0.0000 0.0000 0.0000 0.0000
          ----- Homozygosity ------
                 Mean
                                   SD
Gen.
                         0.01207245
0
             0.68254159
             0.68200626 0.01103250
          ----- Phenotype -----
Gen.
                 Mean
                                   SD
             0.08440969
                         1.01093563
0
             0.04504056
                           1.02152016
Gen.
                  Mean
                                   SD
            0.04889285
0
                          0.56092140
            -0.00533798
                            0.55392545
```

Brief Structure										
Gen.	Progeny	Male%	Male	Selected	Female	Selected	Sire	Culled	Dam	Culled
0	420	0.047619	20	0	400	0	0	0	0	0
1	400	0.500000	200	8	200	80	20	8	400	80
2	400	0.500000	200	8	200	80	20	8	400	80
3	400	0.500000	200	8	200	80	20	8	400	80
4	400	0.500000	200	8	200	80	20	8	400	80
5	400	0.500000	200	0	200	0	20	0	400	0
0verall	2420	0.421488	1020	32	1400	320	100	32	2000	320

```
p1_mrk_001.txt begin_popoutput;
data;
stat;
genotype /snp_code /gen 4 5;
end_popoutput;
end_pop;
```

```
Output options
 **
                              **
 **********
                                  Marker and QTL linkage map
begin_output;
   linkage_map; <
  hp_stat;
end_output;
                     Example 1
                              QTL linkage map
                              Chr
                                     Position
                  ID
                  Q1
                                     8.88876
                  Q2
                                    13.35024
                  Q3
                                    17.76099
                  Q4
                                    22.12918
                  Q5
                                    29,68482
                  Q6
                                    37.76335
                  Q7
                                    43.84122
                  Q8
                                    46.93041
                  Q9
                                    47.16755
                  Q10
                                    48.56634
```

```
**
         Output options
 ***********
begin output;
   linkage map;
                      Save allele effects
   allele effect; ←
end output;
              Example 1
                         Allele:Effect ...
           ID
                   Chr
           Q1
                           1: 0.066403
                                         2:-0.001068
           Q2
                           1:-0.050405
                                         2: 0.031267
           Q3
                           1:-0.006917
                                         2: 0.009631
           Q4
                           1:-0.000543
                                         2: 0.000171
           Q5
                           1:-0.001498
                                         2: 0.004858
           Q6
                           1: 0.001299
                                         2:-0.000535
           Q7
                           2: 0.000000
           Q8
                           1:-0.004849
                                         2: 0.003374
           Q9
                                         2: 0.018606
                           1:-0.014103
           Q10
                           1: 0.048198
                                         2:-0.006161
           Q11
                           1: 0.000189
                                         2:-0.001423
```

Conclusion

To create LD

Population expansion or bottleneck

QTL + polygenic

Dense marker map

Multiple recent populations / lines

Sex limited traits

Crossing between populations / lines

QMSim

A single historical population

No fixed effects

Only additive effects

Genomic selection: validation

Example of simulation

