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1. A Little bit of history (based on Lourenco et al., 2017 @ BIF Conference) 

[http://www.bifconference.com/bif2017/proceedings/01-lourenco.pdf] 

 

Long before genomics found its way into livestock breeding, most of the excitement 

pertaining to research into livestock improvement via selection involved developments in the 

BLUP mixed model equations, methods to construct the inverse of the pedigree relationship matrix 

recursively (Henderson, 1976; Quaas, 1988), parameter estimation and development of new, 

measureable traits of economic importance.  In particular, for several decades (1970’s through the 

early 2000’s), lots of resources were invested in finding the most useful evaluation model for 

various traits. Since the 1970’s, the use of pedigree and phenotypic information has been the major 

contributing factor to the large amount of genetic progress in the livestock industry.   

During the late 1970’s and early 1980’s, geneticists developed techniques that allowed the 

investigation of DNA, and they discovered several polymorphic markers in the genome. Soller and 

Beckmann (1983) described the possible uses of new discovered polymorphisms, and surprisingly, 

their vision of using markers was not much different than how DNA is used today in the genetic 

improvement of livestock.  They hypothesized that markers would be beneficial in constructing 

more precise genetic relationships, followed by parentage determination, and the identification of 

quantitative trait loci (QTL). The high cost of genotyping animals for such markers probably 

prevented the early widespread use of this technology. However, valuable information came along 

with the first draft of the Human genome project in 2001 (The International SNP Map Working 

Group, 2001): the majority of the genome sequence variation can be attributed to single nucleotide 

polymorphisms (SNP).  

After all, what are SNPs? The genome is composed of 4 different nucleotides (A, C, T, and 

G). If you compare the DNA sequence from 2 individuals, there may be some positions were the 

nucleotides differ. The reality is that SNPs have become the bread-and-butter of DNA sequence 

variation (Stonecking, 2001) and they are now an important tool to determine the genetic potential 

of livestock.  Even though several other types of DNA markers have been discovered (e.g., 

microsatellites, RFLP, AFLP) SNPs have become the main marker used to detect variation in the 

DNA.  Why is this so?  An important reason is that SNPs are abundant, as they are found 

throughout the entire genome (Schork et al., 2000). There are about 3 billion nucleotides in the 

bovine genome, and there are over 30 million SNPs or 1 every 100 nucleotides is a SNP. Another 

reason is the location in the DNA: they are found in introns, exons, promoters, enhancers, or 
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intergenic regions. In addition, SNPs are now cheap and easy to genotype in an automated, high-

throughput manner because they are binary.  

One of the benefits of marker genotyping is the detection of genes that affect traits of 

importance.  The main idea of using SNPs in this task is that a SNP found to be associated with a 

trait phenotype is a proxy for a nearby gene or causative variant (i.e., a SNP that directly affects 

the trait).  As many SNPs are present in the genome, the likelihood of having at least 1 SNP linked 

to a causative variant greatly increases, augmenting the chance of finding genes that actually 

contribute to genetic variation for the trait.  This fact contributed to much initial excitement as labs 

and companies sought to develop genetic tests or profiles of DNA that were associated with genetic 

differences between animals for important traits.  Suddenly, marker assisted selection (MAS) 

became popular. The promise of MAS was that since the test or the profile appeared to contain 

genes that directly affect the trait, then potentially great genetic improvement could be realized 

with the selection of parents that had the desired marker profile.   It is not hard to see this would 

work very well for traits affected by one or a couple of genes. In fact, several genes were identified 

in cattle, including the myostatin gene located on chromosome 2. When 2 copies of the loss-of-

function mutation are present, the excessive muscle hypertrophy is observed in some breeds, 

including Belgian Blue, Charolais, and Piedmontese (Andersson, 2001).   Another example of that 

has been shown to have a small, but appreciable effect on beef tenderness pertains to the Calpain 

and Calpastatin (Page et al., 2002) and a genetic test was commercialized by Neogen Genomics 

(GeneSeek, Lincoln, NE) and Zoetis (Kalamazoo, MI). It is important to notice that all those 

achievements were based on few SNPs or microsatellites because of still high genotyping costs. 

Although there were a few applications in cattle breeding, MAS based on a few markers 

was not contributing appreciably to livestock improvement simply because most of the traits of 

interest are quantitative and complex, meaning phenotypes are determined by thousands of genes 

with small effects and influenced by environmental factors. This goes back to the infinitesimal 

model assumed by Fisher (1918), where phenotypic variation is backed up by a large number of 

Mendelian factors with additive effects. Some lessons were certainly learned from the initial stab 

at MAS: some important genes or gene regions (quantitative trait loci or QTL) were detected; 

however, the same QTL were not always observed in replicated studies or in other populations, 

meaning most of them had small effects on the traits (Meuwissen et al., 2016).   In addition, the 

number of QTL associated with a phenotype is rather subjective and depends on the threshold size 

of the effect used for identifying QTL (Andersson, 2001).  Simply put, it appears there are only a 

few genes that contribute more than 1% of the genetic variation observed between animals for any 

given polygenic trait.   

Initial allure of MAS led to a massive redirecting of grant funds to this type of research, 

greatly contributing to the current shortage of qualified quantitative geneticists in animal breeding 

(Misztal and Bertrand, 2008).  Despite some of the initial setbacks using MAS, in 2001, some 

researchers envisioned that genomic information could still help animal breeders to generate more 

accurate breeding values, if a dense SNP assay that covers the entire genome became available. 
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Extending the idea of incorporating marker information into BLUP (using genotypes, phenotypes 

and pedigree information), introduced by Fernando and Grossman (1989), Meuwissen et al. (2001) 

proposed some methods for what is now termed genome-wide selection or genomic selection (GS).  

This paper used simulation data to show that accuracy of selection was doubled using genomic 

selection compared to using only phenotypes and pedigree information.  With the promise of large 

accuracy gains, this paper generated enormous excitement in the scientific community.  Some 

conclusions from this study included: 1) using SNP information can help to increase genetic gain 

and to reduce the generation interval; 2) the biggest advantage of genomic selection would be for 

traits with low heritability; 3) animals can be selected early in life prior to performance or progeny 

testing. With all of this potential, genomic selection was an easy sell. 

However, it took about 8 years from the publication of the Meuwissen et al. (2001) paper 

until the dense SNP assay required for genomic selection became available for cattle. Researchers 

from USDA, Illumina, University of Missouri, University of Maryland, and University of Alberta 

developed a SNP genotyping assay, allowing the genotyping of 54,001 SNP in the bovine genome 

(Illumina Bovine50k v1; Illumina, San Diego, CA). The initial idea of this research was to use the 

SNP assay or chip for mapping disease genes and QTLs linked to various traits in cattle 

(Matukumalli et al., 2009). In 2009, a report about the first bovine genome entirely sequenced (The 

Bovine Genome Sequencing and Analysis Consortium et al., 2009) was published as an output of 

a project that cost over $50 million and involved about 300 researchers. With the cattle sequence 

known, it was possible to estimate the number of genes in the bovine genome: somewhere around 

22,000. Armed with the tools to generate genomic information, GS became a reality.  

Among all livestock industries in USA, the dairy industry was the first to use genomic 

selection. More than 30,000 Holstein cattle had been genotyped for more than 40k SNP by the end 

of 2009 (https://www.uscdcb.com/Genotype/cur_density.html). In January of 2009, researchers 

from AGIL-USDA released the first official genomic evaluation for Holstein and Jersey. Still in 

2009, Angus Genetics Inc. started to run genomic evaluations, but with substantially fewer 

genotypes, which was also true for other livestock species. After the first validation exercises, the 

real gains in accuracy were far less than those promised in the paper of Meuwissen et al. (2001).  

This brought some uncertainties about the usefulness of GS that were later calmed by 

understanding that more animals should be genotyped to reap the full benefits of GS. VanRaden 

et al. (2009) showed an increase in accuracy of 20 points when using 3,576 genotyped bulls, 

opposed to 6 points when using 1,151 bulls. Now, in 2017, Holstein USA has almost 1.9 million 

and the American Angus Association has more than 400,000 genotyped animals.  

When GS was first implemented for dairy breeding purposes, all the excitement was around 

one specific Holstein bull nicknamed Freddie (Badger-Bluff Fanny Freddie), which had no 

daughters with milking records in 2009 but was found to be the best young genotyped bull in the 

world (VanRaden, personal communication).  In 2012 when his daughters started producing milk, 

his superiority was finally confirmed. Freddie’s story is an example of what can be achieved with 

GS, as an animal with high genetic merit was identified earlier in life with greater accuracy. With 
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the release of genomic estimated breeding values (GEBV), the race to genotype more animals 

started. 

The availability of more genotyped cattle drove the development of new methods to 

incorporate genomic information into national cattle evaluations. The first method was called 

multistep, and as the name implied, this method required multiple analyses to have the final 

GEBVs. Distinct training and validation populations were needed to develop molecular breeding 

values (MBV) or direct genomic values (DGV), which were blended with traditional EBVs or 

included as correlated traits (Kachman et al., 2013). This multistep model was the first one to be 

implemented for genomic selection in the USA. Several studies examining the application of 

multistep in beef cattle evaluation have been published (Saatchi et al., 2011; Snelling et al., 2011). 

The main advantage of this approach is that the traditional BLUP evaluation is kept unchanged 

and genomic selection can be carried out by using additional analyses. However, this method has 

some disadvantages: a) MBV are only generated for simple models (i.e., single trait, non-maternal 

models), which is not the reality of genetic evaluations; b) it requires pseudo-phenotypes (EBVs 

adjusted for parent average and accuracy); c) pseudo-phenotypes rely on accuracy obtained via 

approximated algorithms, which may generate low quality output; d) only genotyped animals are 

included in the model; e) MBV may contain part of parent average, which leads to double counting 

of information. 

As only a fraction of livestock is genotyped, Misztal et al. (2009) proposed a method that 

combines phenotypes, pedigree, and genotypes in a single evaluation. This method is called single-

step genomic BLUP (ssGBLUP) and involves altering the relationships between animals based on 

the similarity of their genotypes. As an example, full-sibs have an average of 50% of their DNA 

in common, but in practice this may range from 20% to 70% (Lourenco et al., 2015a).  The 

ssGBLUP has some advantages over multistep methods.  It can be used with multi-trait and 

maternal effect models, it avoids double counting of phenotypic and pedigree information, it 

ensures proper weighting of all sources of information, and it can be used with both small and 

large populations and with any amount of genotyped animals.  Overall, greater accuracies and less 

inflation can be expected when using ssGBLUP compared to multistep methods.  Not long after 

the implementation of GS, single-step was first applied to a dairy population with more than 6,000 

genotyped animals (Aguilar et al., 2010; Christensen and Lund, 2010). An early application of 

ssGBLUP in beef cattle used simulated data with 1500 genotyped animals in an evaluation for 

weaning weight with direct and maternal effects (Lourenco et al., 2013). Although a small number 

of genotyped animals was used, gains in accuracy were observed for both direct and maternal 

weaning weight.  Next ssGBLUP was applied to a real breed association data set (Lourenco et al., 

2015b). This study showed a comprehensive genomic evaluation for nearly 52,000 genotyped 

Angus cattle, with a considerable gain in accuracy in predicting future performance for young 

genotyped animals. This gain was on average 4.5 points greater than the traditional evaluations. 
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2. From SNP markers to genomic selection methods 

If SNP are just markers located outside genic regions, most of the times, why to use 

them? Because they may be linked to QTL or genes, fact that can be explained by an event called 

linkage disequilibrium (LD). The LD is based on expected versus observed allele frequencies 

and measures the non-random association of alleles across loci. This association gives an idea 

about physical distance between loci: strong LD means two loci are close. In this way, one loci 

can be used as a proxy for the others, and gene maps can be created.   

 

Assuming two biallelic loci (A and B), the possible gametes formed will be AB, Ab, aB, ab.  

Observed frequency of 

gametes 

Allele frequencies 

Gamete Frequency Allele Frequency 

AB 0.35 A 0.7 

ab 0.05 a 0.3 

aB 0.25 B 0.6 

Ab 0.35 b 0.4 

 

A measure of correlation between loci can be calculated as: 

𝑟2 =
𝐷2

[𝑝(𝐴)𝑝(𝑎)𝑝(𝐵)𝑝(𝑏)]
; and 𝐷 = 𝑝(𝐴𝐵)𝑝(𝑎𝑏) − 𝑝(𝐴𝑏)𝑝(𝑎𝐵)    [1] 

 

𝑟2 =
[(0.35∗0.05)−(0.25∗0.35)]2

[0.7∗0.3∗0.6∗0.4]
 = 0.0972             [2] 

 

A value of r2 = 0.0972 is considered low. Moderate values are close to 0.2. 

When the effective population size (Ne) is small, the chromosome segments are shorter, 

and LD is stronger. If we compare cattle and swine populations, LD would be stronger in swine 

because of the smaller Ne. The LD also depends on recent and precious recombination events, as 

it is broken down by recombination. In cattle, moderate LD (r2 = 0.2) is observed in distances 

smaller than 0.1cM and strong values (r2 = 0.8) are observed in very short distances. 

Instead of talking about association between loci, let’s assume we can use SNP to deduce 

the genotype of animals at each unobserved QTL. By having dense SNP panels (e.g., 50,000 

SNP), it is more likely that QTL will be in LD with at least one SNP. If QTL A is linked to SNP 

B, depending on the strength of this linkage, once SNP B is observed it will imply QTL A was 

inherited together. In this way, genomic selection relies on the LD between SNPs and QTL, and 

although we do not observe the QTL, an indirect association between SNP and trait phenotype 

can be observed:  
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The effectiveness of genomic selection can be predicted based on the proportion of variance on 

the trait the SNP can explain. 

There are mainly two classes of methods for genomic selection:  

1) SNP effect-based methods 

2) Genomic relationship-based methods 

 

2.1. SNP effect-based methods: 

For most of the livestock populations, the number of SNP is greater than the number of 

genotyped animals, which results in the famous “small n big p problem”. As the number of 

parameters is greater than the data points used for estimation, a solution is to assume SNP effects 

are random; in this way, all effects can be jointly estimated. The most common methods used for 

this purpose are: 

 

1) RR-BLUP or SNP-BLUP 

This method assumes normal distribution for SNP effects and constant variance, which 

means all SNP explain the same proportion of variance on the trait, which is seldom true. If we 

have the following mixed model: 

y =  𝐗𝑏 + 𝐙𝑎 + 𝑒                                [3] 

 

[
X'X X'Z

Z'X Z'Z+I𝜆
] [

𝑏
a

] = [
X'y

Z'y
]            [4] 

 

where X is the incidence matrix for the fixed effects in b, Z is a matrix of SNP content, a is a 

vector of SNP effects, 𝑒 is the residual term, 𝜆 is the ratio of residual (𝜎𝑒
2) to SNP variance (𝜎𝑎

2);  

𝜎𝑎
2 = 𝜎𝑢

2/𝑛𝑞; 𝜎𝑢
2 is the additive genetic variance; 𝑛𝑞 = 2 ∑ 𝑝𝑖(1 − 𝑝𝑖); 𝑝𝑖 is the the allele 

frequency of SNP i. 

Considering the following example with 5 animals genotyped for 7 SNP: 

 

Animal SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 Trait 

1 2 0 0 0 2 0 0 9.87 

2 1 1 0 0 1 1 0 14.48 

3 0 2 0 0 0 0 2 8.91 

4 1 0 1 0 1 0 0 14.64 

5 1 0 0 1 1 1 0 9.55 
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For simplicity, 𝜆 is assumed to be 1. Solutions for the system of equations in [4] are: 

 

Effect Solution 

b 12.45 

SNP1 -0.35 

SNP2 0.28 

SNP3 1.45 

SNP4 -1.37 

SNP5 -0.35 

SNP6 0.54 

SNP7 -1.64 

 

RR-BLUP or SNP-BLUP provides SNP effects, but genomic estimated breeding values (u) can 

be derived as linear combinations of the SNP effects: 

𝑢 =  𝐙𝑎                              [5] 

 

 

2) Bayesian Methods 

Before talking about the Bayesian methods, let’s remember the Bayes’s theorem, which 

combines conditional, marginal, and joint probability: 

𝑝(𝐴|𝐵) =
𝑝(𝐵|𝐴)𝑝(𝐴)

𝑝(𝐵)
                              [6] 

 

For statistical inference, A is unknown (can be a parameter) and B is known (can be a trait 

phenotype). Therefore, we want to infer values A by knowing B. the terms in the formula are: 

𝑝(𝐴|𝐵): posterior probability of unknown A given B is known. 

𝑝(𝐵|𝐴): likelihood function, determined by both A and B.  

𝑝(𝐴): prior probability of unknown A. 

𝑝(𝐵): probability to observe B without having any knowledge of A. 

 

We can drop 𝑝(𝐵) from the formula because it is just scaling the posterior distribution. 

Therefore, the kernel of the Bayes’ theorem is: 

(𝐴|𝐵) ∝ 𝑝(𝐵|𝐴)𝑝(𝐴)                 [7] 

 

2.1) BayesA (Meuwissen et al., 2001) 

Assumes that all SNP have effect on the trait; more precisely, very few SNP have large 

effect and many SNP have small effect. Therefore, different variances are assumed for each 

SNP. 
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𝛽𝑖~𝑁(𝜇, 𝜎𝛽𝑖

2 )                       [8] 

We assume some prior information for the SNP variance. This prior has an inverted chi-squared 

distribution with 𝜈𝛽 degrees of believe and 𝜈𝛽𝑆𝛽
2 scale: 

𝜎𝛽𝑖

2 ~𝜒2(𝜈𝛽 , 𝜈𝛽𝑠𝛽
2)                                    [9] 

𝑝(𝜎𝛽𝑖

2 |𝜇, 𝛽, 𝜎𝑒
2, 𝑫, 𝑦)~𝜒2(1 + 𝜈𝛽 , 𝛽𝑖

2 + 𝜈𝛽𝑆𝛽
2)                  [10] 

 

Therefore, there are i variances to be estimated (D is a diagonal matrix of variances for each 

SNP), whether the SNP i is relevant to the model or not. For the degrees of believe in [10], 1 

degree of believe comes from the data and 𝜈𝛽 from the prior, which is suggested to be 4 in the 

literature. In this way, the posterior is heavily controlled by the prior. Another problem of this 

method is that n SNP effects and n variances have to be estimated, which would require n priors 

for variance, but in real situation, the same prior is used for all variances. 

Bayesian methods are non-linear and likely to be affected by shrinkage, meaning small effects 

became even smaller and big effects even bigger.  

 

2.2) BayesB (Meuwissen et al., 2001) 

Holds the same assumption of BayesA, but for a fraction of SNPs. This is because a 

common thought, when this method was proposed, was that not many QTL were affecting the 

traits. This method states that a proportion (π) of the SNP have no effect and 1- π have a non-

zero effect. Because of this assumption, many loci have zero variance. 

 

𝑝(𝛽𝑖|𝜎𝛽𝑖

2 , 𝜋) = {
𝑁(0, 𝜎𝛽𝑖

2 ) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝜋)

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋
              [11] 

and 

 

𝑝(𝜎𝛽𝑖

2 |𝜈𝛽 , 𝑆𝛽
2)~𝜒2(𝜈𝛽 , 𝑆𝛽

2)                        [12] 

 

When π = 0, BayesB becomes BayesA. 

One problem of BayesB is a distribution with high frequency of zeros when π is large, resulting 

in a posterior distribution that is unknown (not in a closed form); this requires the use of 

Metropolis-Hastings as an extra step in Gibbs Sampling, so SNP effects and variances can be 

jointly sampled. This extra step makes BayesB very slow. 

 

2.3) BayesC 

This method has some features of SNP-BLUP and BayesB. It assumes that SNP are 

drawn from a distribution with constant variance (as in SNP-BLUP) and assumes that some 

fraction π of SNP have no effect (as in BayesB).  
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As only one variance has to be estimated, the data points are bigger than one, meaning the data 

can overwhelm the prior. 

 

𝑝(𝛽𝑖|𝜎𝛽
2) = {

𝑁(0, 𝜎𝛽
2) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝜋)

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋
      [13] 

BayesC is much faster than BayesB. If π = 0, BayesC becomes SNP-BLUP 

 

2.4) BayesCπ 

Is a BayesC with an extra step to estimate π from the data. The prior for π is given by: 

𝜋~𝑈(0,1)                          [14] 

 

Although we stopped at BayesCπ, a “whole alphabet” of methods may be available. 

 

 

      2.2 Genomic relationship-based methods: 

These methods use SNP to infer relationships among individuals, quantifying the number 

of alleles shared between two individuals. When SNP are in LD with QTL, it is expected that 

genomic relationships will provide more accurate information about the covariance between 

relatives than the pedigree relationships. Genomic relationships are identical by state (IBS) 

because they account for the probability that two alleles randomly picked from each individual 

are identical, independently of origin. Pedigree relationships are identical by descent (IBD) 

because they consider the shared alleles come from the same ancestor.  

Let’s assume a matrix Z* of SNP inherited by each animal, with dimension n x m where 

n is the number of animals and m the number of SNP. Several parametrizations exist, but 

assuming AA=0, AB=1, and BB=2 (i.e., number of copies of the B allele), Z* is centered by 

allele frequency. Assuming a matrix P with elements 2pi, with p being the minor frequency of 

allele i: 

𝐙 = 𝐙∗ − 𝐏     [15] 

Why is Z a centered matrix of allele content? Assume we are working with one biallelic marker. 

If the effect of each copy of the A allele is a and the frequency of AA is p2. Individuals with AA 

have a value u = 2a; individuals BB have u = 0 with a frequency of q2; individuals AB have u = 

a with a frequency 2pq. The variance explained by this marker is (Legarra, 2017):  

𝑉𝑎𝑟(𝑢) = E(𝑢2) − 𝐸(𝑢)2 

The average of u is 2ap2 + a2pq; which becomes 2pa. The variance explained by one marker is 

(2a)2p2 + 2pq(a)2 – (2pa)2 = 2pqa2. 

If we genotype two individuals for this marker, what will be the covariance between individuals i 

and j based on this marker? Given the average of u is 2pa, as shown above, if we express the 

breeding values of the animals i and j as za deviated from the population mean (Legarra, 2017): 

𝑢𝑖 =  𝑧𝑖𝑎 − 2𝑝𝑎 =  (𝑧𝑖 − 2𝑝)𝑎 



 

10 

 

𝑢𝑗 =  𝑧𝑗𝑎 − 2𝑝𝑎 =  (𝑧𝑗 − 2𝑝)𝑎 

According to Legarra (2017), if 𝑉𝑎𝑟(𝑎) = 𝜎𝑎
2 , or marker variance, and the genetic variance in 

Hardy-Weinberg equilibrium is 2pq𝜎𝑎
2, the rules of variances and covariances can be applied:  

𝐶𝑜𝑣(𝑢𝑖, 𝑢𝑗) = (𝑧𝑖 − 2𝑝)𝑎(𝑧𝑗 − 2𝑝)𝑎 = (𝑧𝑖 − 2𝑝)(𝑧𝑗 − 2𝑝)𝜎𝑎
2  

If instead of using the allele coding 0,1,2 we use -1,0,1: 

𝐶𝑜𝑣(𝑢𝑖 , 𝑢𝑗) = 𝑧𝑖𝑧𝑗𝜎𝑎
2 

Note that by using -1,0,1, centering is not needed. However, VanRaden (2008) used -1,0,1 with 

centering. In this case, 𝐙 = 𝐙∗ − 𝐏, but column i of P was 2(pi − 0.5), which is equivalent to 

using 0,1,2: 

{

       if 𝑧∗ = −1, then 𝑧 = −1 − 2𝑝 + 1 = 0 − 2𝑝
if 𝑧∗ = 0, then 𝑧 = 0 − 2𝑝 + 1 = 1 − 2𝑝
if 𝑧∗ = 1, then 𝑧 = 1 − 2𝑝 + 1 = 2 − 2𝑝

 

 

Dividing the covariance by the genetic variance 2pq𝜎𝑎
2, we have additive relationships.  

Going from one to several markers, we have that the breeding value of an animal can be 

calculated as the sum of SNP effects weighted by the genotype content (𝑢 =  𝐙𝑎). Assuming the 

same variance per locus, the variance of 𝐮, 𝑉𝑎𝑟(𝑢) =  𝑉𝑎𝑟(𝐙𝑎), then: 

 

𝑉𝑎𝑟(𝑢) =  𝐙𝑉𝑎𝑟(𝑎)𝐙′              [16] 

𝑉𝑎𝑟(𝑢) =  𝐙𝐃𝐙′ = 𝐙𝐙′𝜎𝑎
2            [17] 

 

If the genetic variance 𝜎𝑢
2 =  2 ∑ 𝑝𝑖(1 − 𝑝𝑖)

𝑆𝑁𝑃
𝑖=1 𝜎𝑎

2, then 𝜎𝑎
2 =  

𝜎𝑢
2

2 ∑ 𝑝𝑖(1−𝑝𝑖)𝑆𝑁𝑃
𝑖=1

. Replacing 𝜎𝑎
2 in 

[17] we have that: 

𝑉𝑎𝑟(𝑢) = 𝐙𝐙′
𝜎𝑢

2

2 ∑ 𝑝𝑖(1−𝑝𝑖)𝑆𝑁𝑃
𝑖=1

 , then  𝑉𝑎𝑟(𝑢) =
𝐙𝐙′

2 ∑ 𝑝𝑖(1−𝑝𝑖)𝑆𝑁𝑃
𝑖=1

𝜎𝒖
2     [18] 

According to VanRaden (2008), the genomic relationship (G) is given by:  

𝐆 =
𝐙𝐙′

2 ∑ 𝑝𝑖(1−𝑝𝑖)
,   then 𝑉𝑎𝑟(𝑢) = 𝐆𝜎𝑢

2     [19] 

 

When we divide 𝐙𝐙′ by  ∑ 𝑝𝑖(1 − 𝑝𝑖), G becomes analogous to the numerator 

relationship matrix (A). The G matrix contains the number of homozygous loci for each 

individual in the diagonals, and the number of alleles shared among individuals in the off-

diagonals. Other ways to construct the genomic relationship matrix are described in the 

literature. 
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If G is centered using current allele frequencies, average over all elements is zero, and 

average diagonal is 1 when there is no inbreeding; although G traces inbreeding much further 

than A because it is IBS, A is limited by the recent pedigree recording.   

When the number of genotyped animals is larger than the number of SNP, or if there are 

similar individuals (e.g., clones), G becomes singular, therefore, cannot be inverted. To 

overcome this problem, we modify G to make diagonals bigger. G can be blended with 1% or 

5% of an identity matrix or the pedigree relationship matrix among genotyped animals: 

G = αGraw + (1-α)A22              [20] 

 

1) Genomic BLUP (GBLUP) 

This method is equivalent to SNP-BLUP, but genomic breeding values (𝑢 = 𝐙𝑎) are 

estimated instead of SNP effects (𝑎). It also assumes that SNP explain the same amount of 

variance; therefore, the majority of SNP have a small effect and very few have moderate to large 

effect.  

Using a simple animal model: 

y =  𝐗𝑏 + 𝐖𝑢 + 𝑒                                [21] 

 

[
X'X X'W

W'X W'W+𝐆−𝟏 𝜎𝑒
2

𝜎𝑢
2
] [

𝑏
𝑢

] = [
X'y

W'y
]            [22] 

 

𝑢~𝑁(0, 𝐆𝜎𝑢
2)          [23] 

where W is a matrix that relates observations to animals.  

 

Therefore, GBLUP is a BLUP where the pedigree relationship matrix is replaced by the 

genomic relationship matrix. The effectiveness of GBLUP will depend on the ability of G to 

approach the realized genetic relationships. In addition, performing a quality control of genomic 

data before constructing G avoids biases and losses of accuracy. 

If we assume that not all the genetic variance is explained by markers, an extra polygenic 

effect can be included to explain the remaining variance. In this case, the model in [21] becomes: 

y =  𝐗𝑏 + 𝐖𝑢 + 𝐖𝟐𝑔 + 𝑒                                [24] 

where 𝑔 is a vector of residual polygenic effect that is not captured by the SNPs. Assuming that 

𝛿 is the proportion of variance explained by SNPs, the total additive genetic direct effect (𝑢𝑔) 

becomes  

𝑢𝑔 = 𝑢 + 𝑔                [25] 

𝑉𝑎𝑟(𝑢𝑔) = 𝛿𝐆𝜎𝑢
2 + (1 − 𝛿)𝐀22𝜎𝑢

2                [26] 

Therefore, G* = 𝛿𝐆 + (1 − 𝛿)𝐀22     [27] 

In real situations, it is assumed that 𝛿 varies from 0.8 to 0.95. Note that this is the same approach 

used to make G invertible ([20]).  
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GBLUP has been widely used in animal and plant breeding applications. The problem 

with GBLUP is that G contains only information from genotyped animals, so only those animals 

are included in the model. Because of that, some extra steps need to be taken to combine 

genomic and pedigree information. When using GBLUP, SNP-BLUP or Bayesian models, the 

genomic evaluation method is called multistep. The steps involved in multistep are: 1) estimation 

of EBV using traditional BLUP (all available information); 2) de-regression of EBV, which 

condenses information from phenotypes (e.g., daughter yield deviation in dairy cattle); 3) 

estimation of SNP effects using GBLUP or other models; 4) prediction of 𝐙𝑎, which is also 

known as direct genomic values (DGV); 5) blending DGV with average of parent’s EBV, which 

is known as parent average (PA). Some errors and biases can be introduced during those steps.  

 

2) Single-step Genomic BLUP (ssGBLUP) 

The idea for ssGBLUP came from the fact that only a small portion of the animals, in a 

given population, is genotyped. In this way, the best approach to avoid several steps would be to 

combine pedigree and genomic relationships and use this matrix as the covariance structure in 

the mixed model equations (MME). Legarra et al. (2009) stated that genomic evaluations would 

be simpler if genomic relationships were available for all animals in the model. Then, their idea 

was to look at A as a priori relationship and to G as an observed relationship; however, G is 

observed only for some individuals that have A22 as a priori relationship. Based on that, they 

showed the genomic information could be extended to ungenotyped animal based on the joint 

distribution of breeding values of ungenotyped (𝑢1) and genotyped (𝑢2) animals: 

 

𝑝(𝑢1, 𝑢2) =  𝑝(𝑢2)𝑝(𝑢1|𝑢2)               [28] 

𝑝(𝑢2) =  𝑁(0, 𝐆)             [29] 

If we consider that  

𝑣𝑎𝑟(𝑢1) = 𝐀𝜎𝑢
2           [30] 

 

𝐀 = [
𝐀11 𝐀12

𝐀21 𝐀22
]           [31] 

 

The conditional distribution of breeding values for ungenotyped and genotyped animals is 

𝑝(𝑢1|𝑢2) =  𝑁(𝐀12𝐀22
−1𝑢2, 𝐀11 − 𝐀12𝐀22

−1𝐀21)               [32] 

Because the animals with subscript 1 have no genotypes, the variance depends on their pedigree 

relationships with genotyped animals.  

Variances and covariances are: 

 

                                                    𝑣𝑎𝑟(𝑢1) = 𝑣𝑎𝑟(𝐀12𝐀22
−1𝑢2 + 휀)      [33] 

= 𝑣𝑎𝑟(𝐀12𝐀22
−1𝑢2) + 𝑣𝑎𝑟(휀) 

= 𝐀12𝐀22
−1𝐆𝐀22

−1𝐀21 + 𝐀11 − 𝐀12𝐀22
−1𝐀21 
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Rearranging: 

= 𝐀11 + 𝐀12𝐀22
−1𝐆𝐀22

−1𝐀21 − 𝐀12𝐀22
−1𝐀21 

= 𝐀11 + 𝐀12𝐀22
−1𝐆𝐀22

−1𝐀21 − 𝐀12𝐀22
−1I𝐀21 

= 𝐀11 + 𝐀12𝐀22
−1𝐆𝐀22

−1𝐀21 − 𝐀12𝐀22
−1𝐀22𝐀22

−1𝐀21 

 

Therefore, 

 

𝑣𝑎𝑟(𝑢1) = 𝐀11 + 𝐀12𝐀22
−1(𝐆 − 𝐀22)𝐀22

−1𝐀21       [34] 

 

𝑣𝑎𝑟(𝑢2) = 𝑣𝑎𝑟(𝑍𝑎) =  𝐆             [35] 

 

𝑐𝑜𝑣(𝑢1, 𝑢2) = 𝑐𝑜𝑣(𝐀12𝐀22
−1𝑢2, 𝑢2) = 𝐀12𝐀22

−1𝑣𝑎𝑟(𝑢2) = 𝐀12𝐀22
−1𝐆        [36] 

   

 

Finally, the matrix that contains the joint relationships of genotyped and ungenotyped animals is 

given by: 

 

𝐇 = (
𝑣𝑎𝑟(𝑢1) 𝑐𝑜𝑣(𝑢1, 𝑢2)

𝑐𝑜𝑣(𝑢2, 𝑢1) 𝑣𝑎𝑟(𝑢2)
)         [37] 

 

= (
𝐀11 + 𝐀12𝐀22

−1(𝐆 − 𝐀22)𝐀22
−1𝐀21  𝐀12𝐀22

−1𝐆

𝐆𝐀22
−1𝐀21 𝐆

) 

 

=𝐀 + [
𝐀12𝐀22

−1(𝐆 − 𝐀22)𝐀22
−1𝐀21  𝐀12𝐀22

−1(𝐆 − 𝐀22)

(𝐆 − 𝐀22)𝐀22
−1𝐀21 𝐆 − 𝐀22

] 

 

Which can be simplified to: 

𝐇 =𝐀 + [𝐀12𝐀22
−1  𝟎

𝟎 𝐈
] [

𝐈
𝐈
] [𝐆 − 𝐀22][𝐈 𝐈] [𝐀22

−1𝐀21  𝟎
𝟎 𝐈

]       [38] 

 

 

Although H is very complicated, H-1 is quite simple (Aguilar et al., 2010; Christensen and Lund, 

2010) 

H
-1
=A

-1
+ [
0 0

0 G
-1
– A22

-1 ]                  [39] 

Assuming the following animal model: 

y =  𝐗𝑏 + 𝐖𝑢 + 𝑒                                [40] 

 

The MME for ssGBLUP becomes: 
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[
X'X X'W

W'X W'W+𝐇−𝟏 𝜎𝑒
2

𝜎𝑢
2
] [

𝑏
𝑢

] = [
X'y

W'y
]            [41] 

 

𝑢~𝑁(0, 𝐇𝜎𝑢
2)          [42] 

 

Based on the way H is constructed ([38]), the central element is 𝐆 − 𝐀22, which implies 

both matrices should be compatible (Legarra et al., 2014). However, genomic relationships can 

be biased if G is constructed based on allele frequencies other than the ones calculated from the 

base population (VanRaden, 2008). Allele frequencies from the base population are not known 

because of the recent recording of pedigrees (i.e., the base population per se is unknown). Most 

commonly, allele frequencies used to construct G are based on the recent population. When this 

is the case, the expectation of breeding values for genotyped animals is 0 (VanRaden, 2008). If 

the population is under selection, mean breeding values can deviate from 0. Vitezica et al. (2011) 

proposed an adjustment factor matching averages of 𝐆 to averages of  𝐀22. This adjustment 

accounts for genotyped animals being more related through 𝐀22 than 𝐆 is able to reflect, 

especially when current allele frequencies are used, and can be calculated as: 

ρ =
1

n2
( ∑ ∑ A22 i,j –ji ∑ ∑ Gi,jji )           [43] 

 

where n is the number of elements in A22 and G. The new G is constructed as 

 

G* = (1- ρ /2)G+ 11’ ρ            [44] 

G* is the adjusted genomic relationship matrix, 1 is a vector of ones, and ρ is Wright’s FST. 

 

 

In traditional BULP we obtain EBV, which can be described as (VanRaden and Wiggans, 

1991): 

 

𝐸𝐵𝑉𝑖 = 𝑤1𝑃𝐴𝑖 +  𝑤2𝑌𝐷𝑖 + 𝑤3𝑃𝐶𝑖           [45] 

 

where PAi is the parent average EBV for animal i, YDi is the yield deviation (phenotype adjusted 

for the model effects’ solutions other than additive genetic effects and errors) for animal i, and 

PCi is the progeny contribution for animal i. When both parents are known, the phenotype is 

available, and each progeny has a known mate, weights w1 to w3 sum to 1. 

 

If ssGBLUP is used, the genomic EBV (GEBV) is composed by (Lourenco et al., 2015a):  

 

𝐺𝐸𝐵𝑉𝑖 = 𝑤1𝑃𝐴 + 𝑤2𝑌𝐷 + 𝑤3𝑃𝐶 + 𝑤4𝐺𝑃 + 𝑤5𝑃𝑃          [46] 
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In this case, weights w1 to w5 sum to 1; GP is the direct genomic value and PP is pedigree 

prediction. The information for GP comes from G and the information for PP comes from 𝐀22.  

GP and PP can be retrieved as: 

 

GPi=
− ∑ 𝑔𝑖𝑗

j,j≠i uj

𝑔𝑖𝑖 ;  PPi=
− ∑ 𝑎22

𝑖𝑗
j,j≠i uj

𝑎22
𝑖𝑖               [47] 

 

In general, PP accounts for the part of PA that is explained by GP; when all animals are 

genotyped, A = A22, PA and PP cancel out and GP explains a larger fraction of the GEBV; when 

a genotyped animal is unrelated to the genotyped population, PP = 0 and GP explains a smaller 

portion of the GEBV; when both parents are genotyped, PP will include a large part of PA. 

When a genotyped animal has many progeny, w3 ≈ 1 and its GEBV is mainly driven by PC; 

however, genotyping those animals is useful since they are usually included in the training 

population. When an animal is not genotyped, w4 = 0 and predictions can be improved due to 

improved PA and PC if its relatives are genotyped. When an animal is not genotyped and has no 

phenotypes and no progeny, the GEBV is driven by PA and, in most cases, only a slight 

improvement in prediction is achieved based on genotyped relatives (Lourenco et al., 2015a). 

Weights for all components of GEBV in ssGBLUP can be calculated as: 

 

𝑤1 =  
2

𝑑𝑒𝑛
 ; 𝑤2 =  

𝑛𝑟 𝜆⁄

𝑑𝑒𝑛
 ; 𝑤3 =  

𝑛𝑝 2⁄

𝑑𝑒𝑛
; 𝑤4 =  

𝑔𝑖𝑖

𝑑𝑒𝑛
; 𝑤5 =  

−𝑎22
𝑖𝑖

𝑑𝑒𝑛
        [48] 

 

𝑑𝑒𝑛 = 2 + 𝑛𝑟/𝜆 + 𝑛𝑝/2 + 𝑔𝑖𝑖 − 𝑎22
𝑖𝑖               [49] 

 

where nr is the number of records, λ is the variance ratio (residual over genetic variance), and np 

is progeny size. 

 

On the other hand, when GBLUP is the method of choice for genomic predictions, the 

genomic EBV (GEBV) is composed by: 

𝐺𝐸𝐵𝑉𝑖 = 𝑤4𝐷𝐺𝑉𝑖          [50] 

 

 

SNP effects from GBLUP-based methods: 

The assumption for GBLUP and ssGBLUP is that all SNP explain the same proportion of 

variance on the trait, which is not biologically acceptable. Different weights can be assigned for 

SNP by backsolving GEBV to SNP effects and calculating variance of each SNP (Wang et al., 

2012). Using the idea that GBLUP is equivalent to SNP-BLUP (VanRaden, 2008), the selection 

index equation for GBLUP is:   
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�̂� = 𝐆 [𝐆 + 𝐑 (
𝜎𝑎

2

𝜎𝑒
2)]

−1

(y − 𝐗�̂�)              [52] 

 

where R is a diagonal matrix accounting for heterogeneous residual variance. If  �̂�|�̂� =  𝐙�̂�, 

replacing the first G by 𝐙′, weighted by the ratio of SNP to additive direct variances (k), would 

allow the calculation of SNP effects (a): 

�̂� = 𝐙′k [𝐆 + 𝐑 (
𝜎𝑎

2

𝜎𝑒
2)]

−1

(y − 𝐗�̂�)               [53] 

 

where k is 𝜎𝑎
2/𝜎𝑢

2, and 𝜎𝑎
2 is the SNP variance. As we saw before, 𝜎𝑎

2 = 𝜎𝑢
2 2 ∑ 𝑝𝑖(1 − 𝑝𝑖)⁄ . 

Therefore, k can be reduced to 1 2 ∑ 𝑝𝑖(1 − 𝑝𝑖)⁄ . 

Assuming that:  

𝑤 =  [𝐆 + 𝐑 (
𝜎𝑢

2

𝜎𝑒
2)]

−1

(y − 𝐗�̂�)                         [54] 

then, 

�̂� =  k𝐙′w                    [55] 

and therefore, 

�̂� =  𝐆w                     [56] 

In this way, 

w =  𝐆−1�̂�                   [57] 

 

Finally, the SNP effects can be calculated as: 

 

�̂� =  k𝐙′𝐆−1�̂�            [58] 

 

as 𝑉𝑎𝑟(𝑎) =  𝐃, the conditional mean of SNP effects given the GEBV is: 

 

�̂�|�̂� =  k𝐃𝐙′𝐆−1�̂�                [59] 

 

Thus, given GEBV from ssGBLUP are available, SNP effects are calculated as (Wang et al., 

2012): 

�̂� =  k𝐃𝐙′𝐆−1�̂�                      [60] 

 

 

Calculating SNP weights or variances based on GBLUP-based methods is an iterative 

process. Assuming that D is a diagonal matrix with weights for SNP, the iterative process is: 

1. Set the weight matrix D=I 

2. G=ZDZ’/k        (k scaling factor; details above) 

3. Run single-step 
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4. Convert GEBV into SNP effects �̂� =  k𝐃𝐙′𝐆−1�̂� 

5. Calculate SNP weight/variance for SNP i as  di = 2pi qi ai
2 

6. Normalize D for the same sum(D) 

7. Go to step 2 

 

Usually, the best weights are obtained after 1-2 rounds. Step 3 can be done once (if changes in 

GEBV are small across rounds) or every round. Different formulas can be used to calculate SNP 

weight/variance (e.g., di = ai
2). Variances for each SNP can be plotted as a Manhattan Plot; 

however, no significance test has been developed so far for ssGBLUP or GBLUP. A threshold of 

1% of genetic variance can be assumed if the objective is to explore associations between traits 

and regions in the genome, like in genome-wide association studies (GWAS).  

In tests using simulated data sets the estimates of SNP effects were similar to those by 

BayesB (Wang et al., 2012). However, the best estimates were not for SNP effect of QTL but for 

a cluster of nearby SNPs. This illustrates limited resolution of GWAS in populations with small 

effective population size. 

Weighting SNP seems to improve the accuracy of predicting GEBV for data sets with 

small number of genotyped animals, but marginal or no improvement is observed for large 

genotyped populations (> 10k; Lourenco et al., 2017), even for less polygenic traits.  

 

 

 

3. Validating genomic predictions 

Model validation became very popular in animal breeding and genetics with the adoption 

of genomics. The idea was to compare how superior to EBV the GEBV could be in predicting 

future performance or future breeding value before the animals have their own/progeny records. 

For validation, we split the population in two: training and validation. The training population 

contains informative animals whose phenotypes, pedigree, and genotypes will be used for 

calculating GEBV and/or SNP effects. The validation population contains animals whose GEBV 

will be predicted based on their genotypes and pedigree, but no phenotypes, in addition to the 

information obtained from the training population. As predicting the future is quite vague, we 

instead, go back and hide phenotypes for a portion of the genotyped animals (validation 

animals).  

If we are using multistep methods, SNP effects are calculated based on the training 

population and predictions on training animals are obtained as u = Za. 

 In single-step, training and validation populations are considered together; however, 

validation animals have only genotypes and pedigree in the system. Usually, three analyses are 

needed: 

I. Traditional evaluation (BLUP) with complete dataset (pedigree, genotypes, and 

phenotypes for all animals). This will be the benchmark that we want to reach. 



 

18 

 

II. Traditional evaluation (BLUP) with reduced dataset (i.e., no phenotypes for 

validation animals); 

III. Genomic evaluation (ssGBLUP) with reduced dataset. 

 

Several ways to perform validation are available and the choice depends on the structure 

of the dataset and what the benchmark is: 

 

1) Validation on EBV: when the benchmark is assumed to be a high accuracy EBV. This type of 

validation is common when the validation animals have their own records in addition to 

performance records (e.g., swine populations). The accuracy of predicting the high accuracy 

EBV (TBV*) is calculated as: 

Accuracy of EBV = Cor(TBV*, EBV)        

Accuracy of GEBV = Cor(TBV*, GEBV) 

 

Inflation can be assessed as the regression (b1) coefficient of TBV* on GEBV, whereas the 

intercept (b0) can be considered as a bias estimator; R2 is reliability or accuracy squared: 

TBV* = b0 + b1(G)EBV 

 

 

2) Predictive ability (predictivity or predictability): when the validation animals have only own 

records, the benchmark is the phenotype adjusted for fixed effects (Yc). Note that phenotypes 

must be adjusted by the fixed effects calculated based on the complete dataset. This is 

because phenotypes and information on fixed effects for validation animals are only present 

in the complete dataset.  

Predictivity EBV = Cor(Yc, EBV)   

Predictivity GEBV = Cor(Yc, GEBV)       

To put predictivity in the accuracy scale, we divide it by square root of heritability (h). 

However, this approach can be problematic for traits with very low heritability, given that 

values can go out of the range for accuracy (0 –1). 

This type of validation is common in beef cattle and chicken datasets. 

 

3) Interbull validation (mostly used in dairy cattle): in dairy cattle, the interest is to evaluate 

bulls but records for most of the traits are available only on females. For a bull to be progeny 

tested, it may take from 5 to 7 years, given his daughters have to calve for milk production 

traits started being recorded. In this validation method we remove phenotypes for one 

generation (~5 years); therefore, validation bulls have no daughters with records in the 

reduced dataset, but at least n (e.g., 10) daughters with records in the complete dataset. 
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Illustration of a reduced dataset used for the Interbull validation test.  

 

The benchmark in this case is a measure that condenses the progeny information as daughter 

yield deviation (DYD) or deregressed proof. DYD is the weighted average of yield of all 

progeny of a bull adjusted for all fixed effects and breeding values of the mates of the bull 

(Mrode, 2014). The calculation of DYD can be unstable and quite complicated sometimes. 

VanRaden (2008) suggested a simple way to obtain deregressed proof for bulls (we also call 

it daughter deviation; DD) 

DDcomplete =  
EBVcomplete – PAcomplete

Rcomplete
 +  PAcomplete         [61] 

where the fraction is the deregressed Mendelian sampling; Rcomplete is the deregression 

factor obtained by: 

Rcomplete =  
DEprogeny

DEprogeny + DEPA + 1
            [62] 

 

DEPA =  
RELPA

1−RELPA 
              [63] 

 

DEprogeny =  
RELEBV

1−RELEBV 
− DEPA              [64] 

 

where DEprogeny is equivalent contributions from progeny (daughters), DEPA is equivalent 

daughter contributions from parent average (PA), REL is reliability of EBV (as a measure of 

error associated with EBV prediction). The subscript “complete” indicates that the values 

were calculated from the complete data set. 

In dairy cattle, the measure of predictivity is reliability (R2). In this way,  

DDcomplete = b0 + b1(G)EBV 

Inflation can be assessed as the regression (b1) coefficient of TBV* on GEBV, whereas the 

intercept (b0) can be considered as a bias estimator; R2 is reliability or accuracy squared. 

 

Note that there are 2 purposes/notions of accuracy or reliability (Bijma, 2012):  
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a) Correlation between the “true EBV” and the EBV for selection candidates, which is a 

population parameter and reflects the response to selection. This value is reduced when 

selection takes place.  

b) Stability of EBV, which is calculated for each individual based on standard errors. This 

value does not account for selection.  

c) It is not possible to obtain a single measure that would reflect correlation between the 

true and estimated breeding value, and the standard error when the population is under 

selection. 

 

4) K-fold cross validation: it can be used when the validation animals have only own 

phenotypes or when all individuals are from a single generation. In this method, the 

genotyped population is randomly divided into k subsets, and phenotypes are removed from 

one subset a time. Every time phenotypes are removed from one subset, we need to run 

reduced BLUP and ssGBLUP (or other genomic method). 

 

Illustration of a 5-fold cross validation scheme (Fragomeni et al., 2016) 

 

Predictivity for each fold is calculated as below. The final predictivity is the average of all 

folds.  

Predictivity EBV =  
∑ 𝐶𝑜𝑟(𝑌𝑐, 𝐸𝐵𝑉)𝑘

𝑖=1

𝑘 
 

 

Predictivity GEBV =  
∑ 𝐶𝑜𝑟(𝑌𝑐, 𝐺𝐸𝐵𝑉)𝑘

𝑖=1

𝑘 
 

 

This type of validation can give extremely high predictivity, especially in small populations 

where training and validation populations are highly related. When several generations of 

data are available, the training population may contain progeny and the validation population 

may contain parents, which does not make sense. 

 

 

 

 



 

21 

 

References 

Aguilar, I., I. Misztal, D. L. Johnson, A. Legarra, S. Tsuruta, and T. J. Lawlor. 2010. Hot topic: 

A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic 

evaluation of Holstein final score. Journal of Dairy Science 93: 743-752. 

Andersson, L. 2001. Genetic dissection of phenotypic diversity in farm animals. Nat. Rev. Genet. 

2: 130-138. 

Bijma, P. 2012. Accuracies of estimated breeding values from ordinary genetic evaluations do 

not reflect the correlation between true and estimated breeding values in selected populations. J. 

Anim. Breed. Genet. 129:345-358. 

Christensen, O. F., and M. S. Lund. 2010. Genomic prediction when some animals are not 

genotyped. Genet. Sel. Evol. 42: 2. 

Fernando, R. L., and M. Grossman. 1989. Marker-assisted selection using best linear unbiased 

prediction. Genet. Sel. Evol. 21: 467-477. 

Fisher, R. A. 1918. The correlation between relatives on the supposition of Mendelian 

inheritance. Trans. R. Soc. 52: 399-433. 

Henderson, C.R. 1976. A Simple Method for Computing the Inverse of a Numerator 

Relationship Matrix Used in Prediction of Breeding Values. Biometrics 32:69-83. 

Legarra, A., I. Aguilar, and I. Misztal. 2009. A relationship matrix including full pedigree and 

genomic information. J. Dairy Sci. 92:4656-4663. 

Legarra, A., O. F. Chistensen, I. Aguilar, and I. Misztal. 2014. Single step, a general approach 

for genomic selection. Livest. Prod. Sci. 166:54-65. 

Legarra, A. 2017. Bases for genomic prediction. 

http://genoweb.toulouse.inra.fr/~alegarra/GSIP_git.pdf 

Lourenco, D. A. L., I. Misztal, H. Wang, I. Aguilar, S. Tsuruta, and J. K. Bertrand. 2013. 

Prediction accuracy for a simulated maternally affected trait of beef cattle using different 

genomic evaluation models. J. Anim. Sci. 91: 4090-4098. 

Lourenco, D. A. L., B. O. Fragomeni, S. Tsuruta, I. Aguilar, B. Zumbach, R. J. Hawken, A. 

Legarra, and I. Misztal. 2015a. Accuracy of estimated breeding values with genomic information 

on males, females, or both: an example in broiler chicken. Genet. Sel. Evol. 47: 56. 

Lourenco, D. A. L., S. Tsuruta, B. O. Fragomeni, Y. Masuda, I. Aguilar, A. Legarra, J. K. 

Bertrand, T. Amen, L. Wang, D. W. Moser, and I. Misztal. 2015b. Genetic evaluation using 

single-step genomic best linear unbiased predictor in American Angus. Journal of Animal 

Science 93: 2653-2662. 

Lourenco D.A.L, Fragomeni, B.O., Bradford, H.L., et al. 2017. Implications of SNP weighting 

on single-step genomic predictions for different reference population sizes. J. Anim. Breed. 

Genet. 134:46-471. 

Matukumalli, L. K., C. T. Lawley, R. D. Schnabel, J. F. Taylor, M. F. Allan, M. P. Heaton, J. 

O'Connell, S. S. Moore, T. P. L. Smith, T. S. Sonstegard, and C. P. VanTassell. 2009. 

Development and characterization of a high density SNP genotyping assay for cattle. PLoS One 

4: e5350. 

http://genoweb.toulouse.inra.fr/~alegarra/GSIP_git.pdf


 

22 

 

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value 

using genome-wide dense marker maps. Genetics 157: 1819-1829. 

Meuwissen, T. H. E., B. Hayes, and M. Goddard. 2016. Genomic selection: A paradigm shift in 

animal breeding. Anim. Front. 6: 6-14. 

Misztal, I., and J. K. Bertrand. 2008. Challenges of training quantitative graduate students. J. 

Anim. Sci. 86 (E-Suppl. 1): 165. 

Misztal, I., A. Legarra, and I. Aguilar. 2009. Computing procedures for genetic evaluation 

including phenotypic, full pedigree, and genomic information. Journal of Dairy Science 92: 

4648-4655. 

Mrode, R. 2014. Linear models for the prediction of animal breeding values. CABI - 3rd ed. 

343p. 

Page, B. T., E. Casas, M. P. Heaton, N. G. Cullen, D. L. Hyndman, C. A. Morris, A. M. 

Crawford, T. L. Wheeler, M. Koohmaraie, J. W. Keele, and T. P. Smith. 2002. Evaluation of 

single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J. 

Anim. Sci. 80: 3077-3085. 

Quaas, R.L. 1988. Additive genetic model with groups and relationships. J. Dairy Sci. 71:1338-

1345. 

Saatchi, M., M. C. McClure, S. D. Mckay, M. M. Rolf, J. Kim, J. E. Decker, T. M. Taxis, R. H. 

Chapple, H. R. Ramey, S. L. Northcutt, S. Bauck, B. Woodward, J. C. M. Dekkers, R. L. 

Fernando, R. D. Schnabel, D. J. Garrick, and J. F. Taylor. 2011. Accuracies of genomic breeding 

values in American Angus beef cattle using K-means clustering for cross-validation. Gen. Sel. 

Evol. 43: 40. 

Schork, N. J., D.Fallin, and S. Lanchbury. 2000. Single nucleotide polymorphisms and the future 

of genetic epidemiology. Clin. Genet. 58: 250-264. 

Snelling, W. M., M. F. Allan, J. W. Keele, L. A. Kuehn, R. M. Thallman, G. L. Bennett, C. L. 

Ferrell, T. G. Jenkins, H. C. Freetly, M. K. Nielsen, and K. M. Rolfe. 2011. Partial-genome 

evaluation of postweaning feed intake and efficiency of crossbred beef cattle. J. Anim. Sci. 89: 

1731-1741. 

Soller, M., and J. S. Beckmann. 1983. Genetic polymorphism in varietal identification and 

genetic improvement. Theor. Appl. Genet. 67: 25-33. 

Stonecking, M. 2001. From the evolutionary past... . Nature 409: 821-822. 

The Bovine Genome Sequencing and Analysis Consortium, C. G. Elsik, R. L. Tellam, and K. C. 

Worley. 2009. The genome sequence of taurine cattle: a window to ruminant biology and 

evolution. Science 324: 522-528. 

The International SNP Map Working Group. 2001. A map of human genome sequence variation 

containing 1.42 million single nucleotide polymorphisms. Nature 409: 928-933. 

VanRaden, P. M. and G. R. Wiggans. 1991. Deviation, calculation, and use of national animal 

model information. J. Dairy Sci. 74:2737-2746. 

VanRaden, P. M. 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 

91:4414-4423. 



 

23 

 

VanRaden, P. M., C. P. VanTassel, G. R. Wiggans, T. S. Sonstegard, R. D. Schnabel, J. F. 

Taylor, and F. S. Schenkel. 2009. Invited review: Reliability of genomic predictions for North 

American Holstein bulls. J. Dairy Sci. 92: 16-24. 

Vitezica, Z. G., I. Aguilar, I. Misztal, and A. Legarra. 2011. Bias in genomic predictions for 

populations under selection. Genet. Res. (Camb.) 93:357-366. 

Wang, H.,  I. Misztal, I. Aguilar, A. Legarra, and W. M. Muir. 2012. Genome-wide association 

mapping including phenotypes from relatives without genotypes. Genet. Res. 94(2):73-83. 

 


