

SSGBLUP

Daniela Lourenco UGA USA

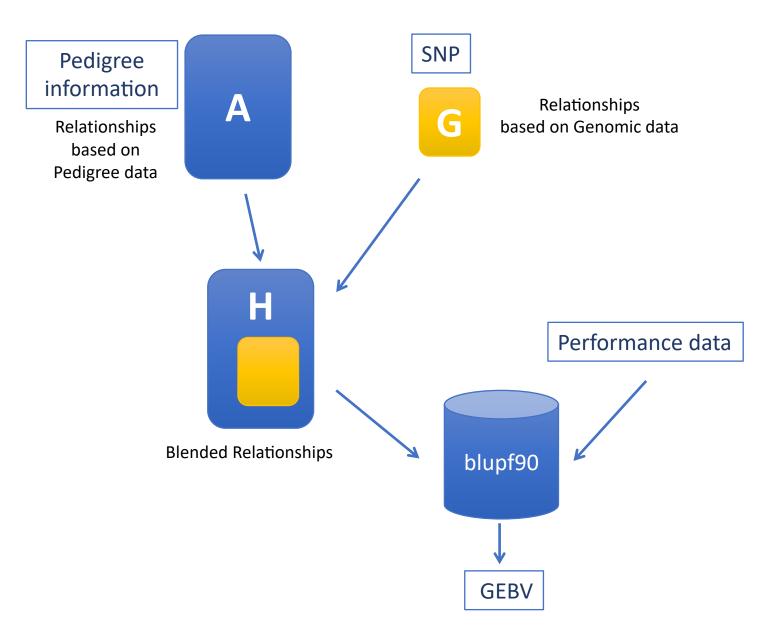
Andres Legarra INRA France Ignacio Aguilar INIA Uruguay

UGA TEAM, 08/2019

About prediction methods ...

No Genotypes – Only Pedigree

$$\mathsf{BLUP} \begin{bmatrix} \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'X} & \mathbf{Z'Z} + \mathbf{A^{-1}\alpha} \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix}$$


No Pedigree – Only Genotypes

$$\mathsf{GBLUP} \begin{bmatrix} \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'X} & \mathbf{Z'Z} + \mathbf{G}^{-1}\alpha \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix} \qquad \qquad \mathsf{SNP-BLUP} \begin{bmatrix} \mathbf{X'X} & \mathbf{X'M} \\ \mathbf{M'X} & \mathbf{M'M} + \mathbf{I}\lambda \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ \mathbf{a} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{M'y} \end{bmatrix}$$

Pedigree + Genotypes

 $ssGBLUP \begin{bmatrix} \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'X} & \mathbf{Z'Z} + \mathbf{H}^{-1}\alpha \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix} \qquad ssBR \begin{bmatrix} x'x & x'ZM & x'_{n}z_{n} \\ m'z'x & m'z'ZM + I\frac{\sigma_{e}^{2}}{\sigma_{a}^{2}} & m'_{n}z'_{n}z_{n} \\ z'_{n}x_{n} & z'_{n}z_{n}M_{n} & z'_{n}z_{n} + \mathbf{A}^{nn}\frac{\sigma_{e}^{2}}{\sigma_{a}^{2}} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{\alpha} \\ \hat{\epsilon} \end{bmatrix} = \begin{bmatrix} x'y \\ M'Z'y \\ z'_{n}y_{n} \end{bmatrix}$

Single-Step Genetic Evaluation

H adjusts relationships for ungenotyped animals

Animal	Sire	Dam
1	0	0
2	0	0
3	1	1
4	2	2

Pedigree Relationship Matrix (A)				Genomic Relationship Matrix (G) for animals 3 ar			Realized Relationship Matrix (H)		
Γ1.0	0.0	0.5	0.51			[1.004	0.0	0.507	0.507]
	1.0	0.5	0.5				1.004	0.507	0.507
		1.0	0.5	[1.0]	0.52			1.0	0.52
	•		1.0	L.	1.0	L.			1.0

Understanding the H matrix

- It is a projection of **G** matrix on the rest of individuals "so that" **G** matrix makes sense
 - e.g. parents of two animals related in **G** should be related in **A**
- It is a Bayesian updating of the pedigree matrix based on new information from genotypes

- Typically
 - A⁻¹ in the millions but extremely sparse
 - **G** and **A**₂₂ in the thousands
 - Leads to a very efficient method of genomic evaluation:

Some properties of H

- Semi-positive definite <u>always</u>
 - eigenvalues are always positive or zero
- Positive definite & invertible <u>if</u> **G** is invertible
- In practice, if G is too different (wrong pedigree or genotyping) from A₂₂, this gives lots of numerical problems
- If everyone is genotyped, Single Step is GBLUP
- If no one is genotyped, Single Step is BLUP

H matrix from Legarra et al. (2009)

- Genomic evaluation would be simpler if all animals were genotyped (2)
- Genomic info can be extended to ungenotyped (1) animals
 - joint distribution of EBV for ungenotyped (u₁) and genotyped (u₂)

 $p(u_1, u_2) = p(u_2)p(u_1|u_2)$

$$\mathbf{H} = \begin{pmatrix} var(u_1) & cov(u_1, u_2) \\ cov(u_2, u_1) & var(u_2) \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{11} + \mathbf{A}_{12}\mathbf{A}_{22}^{-1}(\mathbf{G} - \mathbf{A}_{22})\mathbf{A}_{22}^{-1}\mathbf{A}_{21} & \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{G} \\ \mathbf{G}\mathbf{A}_{22}^{-1}\mathbf{A}_{21} & \mathbf{G} \end{pmatrix}$$

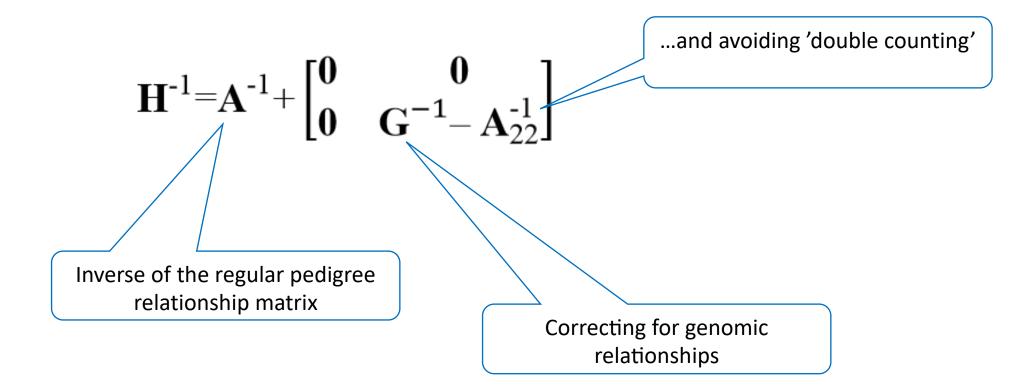
$$\mathbf{H} = \mathbf{A} + \begin{bmatrix} \mathbf{A}_{12}\mathbf{A}_{22}^{-1}(\mathbf{G} - \mathbf{A}_{22})\mathbf{A}_{22}^{-1}\mathbf{A}_{21} & \mathbf{A}_{12}\mathbf{A}_{22}^{-1}(\mathbf{G} - \mathbf{A}_{22}) \\ (\mathbf{G} - \mathbf{A}_{22})\mathbf{A}_{22}^{-1}\mathbf{A}_{21} & \mathbf{G} - \mathbf{A}_{22} \end{bmatrix}$$

Legarra et al., 2009

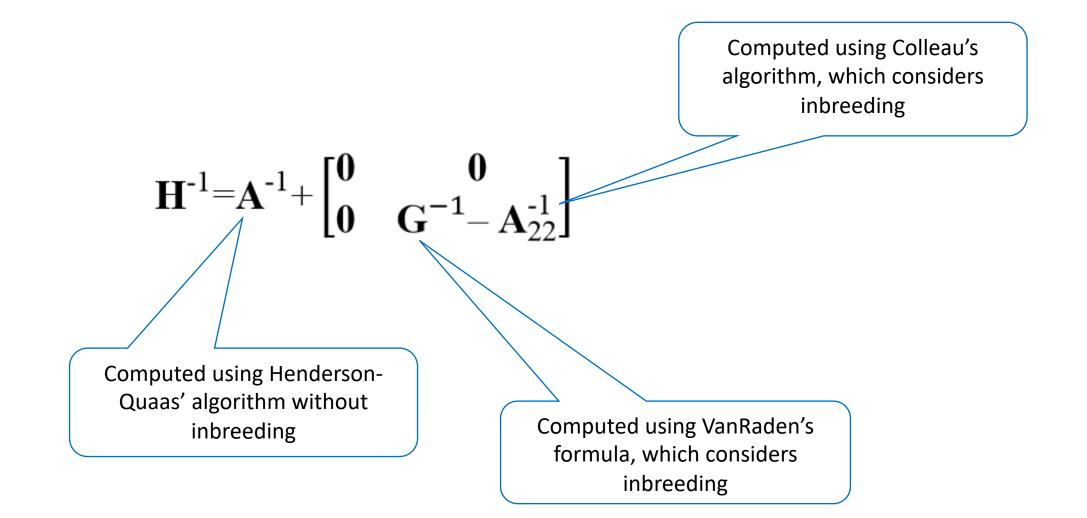
Combining two sources of relationship

• A

- Contains expected relationships
- Is limited by the pedigree depth and completeness
- Depends on accuracy of recording pedigrees


• G

- Contains number of alleles shared between animals weighted by heterozygosity
- No limitations regarding to number of past generations
- Depends on allele frequency and quality of genomic data


About the matrices

• Inverse of **H** is used in MME

Computing all matrices before 2016

Initial tests with ssGBLUP

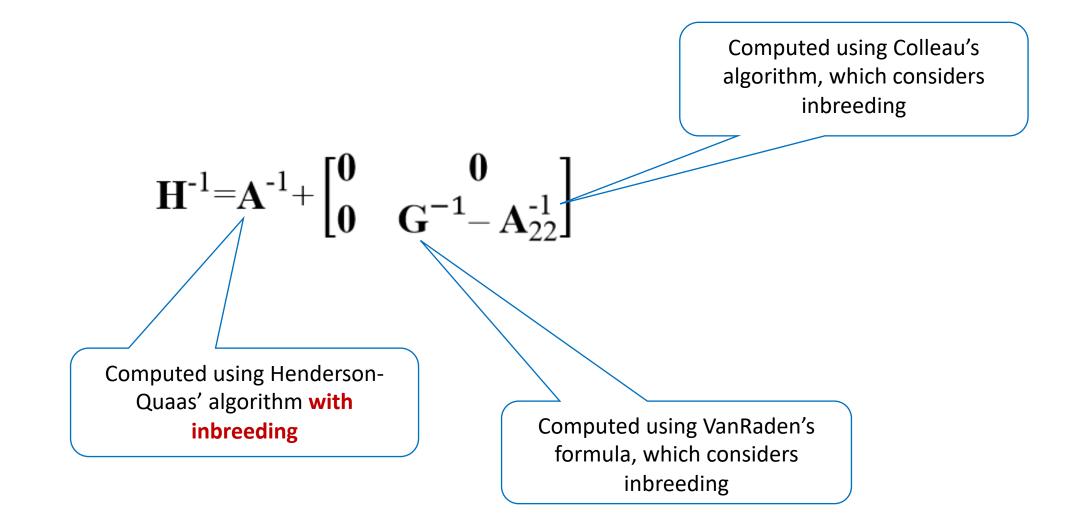
- Tsuruta et al. (2011)
 - US Holsteins final score
 - 8.9M phenotypes | 7.9M pedigree | 17.3k genotypes (6.9k validation)
 - Inflated GEBV for young bulls (validation)
 - Solution: to reduce A_{22}^{-1}

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \tau \mathbf{G}^{-1} - \omega \mathbf{A}_{22}^{-1} \end{bmatrix}$$

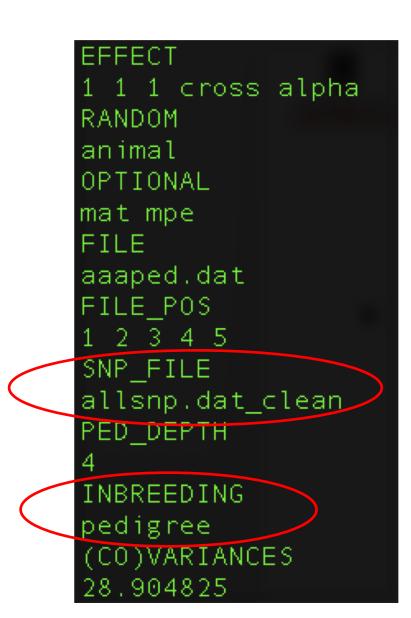
- $\tau~$ and $~\omega$ to reduce inflation in GEBV

Experience with simulated data

- Pocrnic et al. (2016)
- Each of the 10 generations: 5 males mated 12.5k females
- 138k pedigree | 75k genotyped animals
- Average inbreeding in generation 10 = 0.21
- No convergence after 5000 iterations



- Ideal simulated population
- No missing pedigree
- All recent generations were in the pedigree file
- Convergence obtained with $\omega = 0.70$



Computing all matrices after 2016

To prepare data for ssGBLUP with inbreeding in A⁻¹

• renumf90

Compatibility between G and A₂₂

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

 $\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1}$ Inflation/deflation $\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1}$ Bias $\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1}$ Inflation/deflation???

Blending and compatibility

- These are two different things
- Many people do not understand this
- "compatibility" tries to put **G** and **A** in the same scale
- "blending" : **G** = **G***0.95 + **A**₂₂*0.05
 - used to have an invertible **G**
 - assigns part of the genetic variance to pedigree not markers

Options for Blending and compatibility

- Blending
- OPTION AlphaBeta alpha beta
 - G = alpha*G + beta*A₂₂
- Compatibility
- OPTION tunedG
 - 0: no adjustment
 - 1: mean(diag(G))=1, mean(offdiag(G))=0
 - 2: mean(diag(G))=mean(diag(A₂₂)), mean(offdiag(G))=mean(offdiag(A₂₂)) (default)
 - 3: mean(G)=mean(A₂₂)
 - 4: Use Fst adjustment Powell et al. (2010) & Vitezica et al. (2011)

$$\rho = \frac{1}{n^2} \left(\sum_i \sum_j \mathbf{A}_{22\,i,j} - \sum_i \sum_j \mathbf{G}_{i,j} \right) \qquad \mathbf{G}^* = (1 - \rho/2) \mathbf{G} + \mathbf{11}' \rho$$

Forcing G to be similar to A₂₂

• Vitezica et al. (2011) and Christensen et al. (2012) provided an unbiased method that forces the same genetic base across **G** and **A**₂₂ :

$$\boldsymbol{G}^* = \boldsymbol{a} + \boldsymbol{b}\boldsymbol{G}$$

- *a* accounts for old relationships among non-genotyped ancestors
- *b* accounts for reduction in the genetic variance

$$a + b \ \overline{\mathbf{G}} = \overline{\mathbf{A}}_{22}$$

$$a + b \overline{diag(G)} = \overline{(diag(A_{22}))}$$

Forcing G to be similar to A₂₂

Recipe (default in blupf90)

- Compute **G** with current allele frequencies
- Compute *A*₂₂
- Solve equations $a + b \overline{G} = \overline{A}_{22}$, $a + b \overline{diag(G)} = (diag(A_{22}))$
- Get new $G^* = a + bG$
- Build final $H^{-1} = A^{-1} + \begin{pmatrix} 0 & 0 \\ 0 & G^{*-1} A_{22}^{-1} \end{pmatrix}$

Does actually G resemble A₂₂?

- If pedigree is good and genotyping is good, yes it does!
- Usually
 - $Cor(A_{22ij}, G_{ij}) \approx 0.8$
 - If $Cor(A_{22ij}, G_{ij}) > 0.95$ genomic is not so informative
 - If $Cor(A_{22ij}, G_{ij}) < 0.5$ mislabeling of samples or heterogeneous population
 - $Cor\left(F_{pedigree_i}, F_{genomic_i}\right) \approx 0.5$
- Useful for quality control

Main scaling parameters in ssGBLUP

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

$$\mathbf{G} = (\alpha \mathbf{G} + \beta \mathbf{A}_{22})$$

- Blending
- makes **G** positive-definite
- α = from 0.95 to 0.80
- Improves convergence

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \tau(\alpha \mathbf{G} + \beta \mathbf{A}_{22}) & \mathbf{-1} - \omega \mathbf{A}_{22}^{-1} \end{bmatrix}$$

- Scaling
- τ and ω
- Used for compatibility between $G^{\text{-}1}$ and A^{-1}_{22}
- Reduces inflation
 - Tuning
 - tunedG

$$\mathbf{a} = \frac{1}{n^2} \left(\sum_{i} \sum_{j} \mathbf{A}_{22} - \sum_{i} \sum_{j} \mathbf{G} \right)$$

- Accounts for selection in A
- Improves accuracy and reduces bias

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \tau((\alpha \mathbf{G} + \beta \mathbf{A}_{22}) + \mathbf{11'a})^{-1} - \omega \mathbf{A}_{22}^{-1} \end{bmatrix}$$

Should τ and ω be used in ssGBLUP evaluations?

- Need for scaling parameters depend on compatibility among matrices
 - Pedigree, genomic, pedigree for genotyped animals
- Most of the compatibility problems are caused by
 - Ignoring inbreeding in **A**⁻¹
 - Missing pedigrees for genotyped animals
 - Wrong definition of UPG
 - Ignoring inbreeding for UPG

Validation of genomic models