

Creating genomic relationship matrices with preGSf90

Daniela Lourenco UGA USA Ignacio Aguilar INIA Uruguay

BLUPF90 TEAM, 02/2022

preGSf90

Performs Quality Control of SNP information

- Creates the genomic relationship matrix (G)
 - and relationships based on pedigree (A_{22})
 - Inverse of relationship matrices

BLUP-based models

$$\mathbf{H}^{-1} = \begin{bmatrix} \mathbf{A}^{11} & \mathbf{A}^{12} \\ \mathbf{A}^{21} & \mathbf{A}^{22} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}^{-1}_{22} \end{bmatrix} \qquad \mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}^{-1}_{22} \end{bmatrix}$$

PreGSf90

• Created to construct the matrices using in ssGBLUP

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$
$$\mathbf{G} \qquad \mathbf{G}^{-1}$$
$$\mathbf{A}_{22} \qquad \mathbf{A}_{22}^{-1}$$
$$\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1}$$

Genomic Relationship Matrix - G

(VanRaden, 2008)

- -Z = matrix for SNP marker
- Dimension of $Z = n^*i$
- *n* animals
- *i* markers

SNP file

211010110020120110110101101111111211111210100 80 8014 21110101511101120221110111511112101112210100 516 211001012022520211202101211021112022121 181 211101111122011205502000201010222122111

Genotype Codes

- 0 Homozygous
- 1 Heterozygous
- 2 Homozygous
- 5 No Call (Missing)

HOW TO: Creation of Genomic Matrix

- Read SNP marker information => M212..010..

- Get 'means' to center
 - Calculate allele frequency from observed genotypes (p_i)
 - $p_i = sum(SNPcode_i)/2n$
- Centered matrix $\mathbf{Z} = \mathbf{M} 2\mathbf{P}$
- $\mathbf{G} = \frac{\mathbf{Z}\mathbf{Z}'}{2\sum p_i(1-p_i)}$

(VanRaden, 2008)

Creation of Genomic matrix

- Issues
 - Large number of genotyped individuals
 - Large number of SNP markers
 - Matrix multiplication ~ cost $n^2 * i$
- Large amounts of data put in (cache) memory to do matrix multiplication for each pair of animals and indirect memory access (center)

PreGSf90

- Efficient methods
 - create the genomic relationship matrix and the relationship matrix based on pedigree
 - Invert the relationship matrices
- Computes statistics for the matrices
 - Means, Var, Min, Max
 - Correlations between diagonals
 - Correlations for off-diagonals
 - Correlations for the full matrices
 - Regression coefficients

OPTIONS – preGS90 parameter file

- PreGSF90
 - controled by adding OPTION commands to the parameter file
 - OPTION SNP_file marker.geno.clean
 - Reads:
 - marker.geno.clean
 - marker.geno.clean.XrefID (created by renumf90)
 - Pedigree file
 - Map file (optional)

Genomic Matrix default options

•
$$\mathbf{G}_0 = \frac{\mathbf{Z}\mathbf{Z}'}{2\sum p_i(1-p_i)}$$
 (VanRaden, 2008)

- With:
 - Z centered using current allele frequencies
 - Current genotyped animals

Genomic Matrix Options

- OPTION which freq x
 - 0: read from file *freqdata* or other specified name (needs OPTION FreqFile)
 - 1:0.5
 - 2: current calculated from genotypes (default)
- OPTION FreqFile file
 - Reads allele frequencies from a file

Genomic Matrix default options

- Blending to avoid singulatiry problems
 G = 0.95*G₀+ 0.05*A₂₂
 OPTION AlphaBeta 0.95 0.05 #(default)
 - Beta may vary from 0.2 to 0.01

Genomic Matrix default options

• Tuning

 Adjust G to have mean of diagonals and offdiagonals equal to A₂₂

- OPTION tunedG 2 #(default) Chen et al. (2011)

- Base of GBLUP is *genotyped* animals
- Base of pedigree is *founders of the pedigree*
- For SSGBLUP modelled as a mean for genotyped animals

$$-p(\boldsymbol{u}_2) = N(\mathbf{1}\boldsymbol{\mu}, \mathbf{G})$$

- Integrate μ : $\mathbf{G}^* = 11'\lambda + (1 \lambda/2)\mathbf{G}$
- μ = (Genomic base) (Pedigree base)
- Vitezica et al. 2011

Options for matching **G** to **A**₂₂

- OPTION tunedG x
 - 0: no adjustment
 - -1: mean(diag(G))=1, mean(offdiag(G))=0
 - 2: mean(diag(G))=mean(diag(A₂₂)), mean(offdiag(G))=mean(offdiag(A₂₂)) (default)
 - $-3: mean(G)=mean(A_{22})$
 - 4: Use Fst adjustment. Powell et al. (2010) & Vitezica et al. (2011)

$$\lambda = \frac{1}{n^2} \left(\sum_{i} \sum_{j} \mathbf{A}_{22_{ij}} - \sum_{i} \sum_{j} \mathbf{G}_{ij} \right) \qquad \mathbf{G}^* = 11'\lambda + (1 - \lambda/2)\mathbf{G}$$

Storing and Reading Matrices

- preGSf90 saves $\mathbf{G}^{-1} \mathbf{A}_{22}^{-1}$ by default (file: GimA22i)
- To save 'raw' genomic matrix:
- OPTION saveG [all]
 - If the optional *all* is present all intermediate **G** matrices will be saved!!!
- To save **G**⁻¹
- OPTION saveGInverse
 - Only the final **G**, after blending, scaling, etc. is inverted !!!
- To save \boldsymbol{A}_{22} and inverse
- OPTION saveA22 and OPTION saveA22Inverse

Storing and Reading Matrices

- OPTION saveG [all], OPTION saveGInverse, ...
 - Saves in binary format
 - "Dumped" format to save space and time
 - To save as row, column, value:
 - OPTION no_full_binary
 - Still binary, but can be easily read and converted to text

Storing with Original IDs

- Some matrices could be stored in text files with the original IDs extracted from *renaddxx.ped* created by the RENUMF90 program (col #10)
- For example:
 - OPTION saveGOrig
 - OPTION saveDiagGOrig
 - OPTION saveHinvOrig
- Values
 - origID_i, origID_j, val

Genomic Matrix - Population structure

OPTION plotpca

Plot first two principal components to look for stratification in the population.

OPTION extra_info_pca file col

Reads from file the column col to plot with different colors for different classes.

Genomic Matrix - Population structure

Tricks to setup **G** for GBLUP

- Tricks are needed because preGSf90 is set up for ssGBLUP
- 1) Use a dummy pedigree 100 200
- 2) Use PED_DEPTH 1 in renumf90
- 3) Change blending parameters
 - − OPTION AlphaBeta 1.00 0.00 \rightarrow G = 1.00*G + 0.00*I
 - OPTION AlphaBeta 0.99 0.01 \rightarrow G = 0.99*G + 0.01*I

- 4) No adjustment for compatibility with A_{22}
 - OPTION tunedG 0

PreGSf90 inside BLUPF90 ??

- Almost all programs from BLUPF90 support the creation of genomic relationship matrices
- OPTION SNP_file xxxx

- Why preGSF90 ?
 - Same genomic relationship matrix for several models, traits, etc.
 - Just do it once and store GimA22i

Use in application programs

- Use renumf90 for renumbering and creation of XrefID and files SNP_FILE marker.geno
- Run preGSf90 with quality control, saving clean files
- Option 1:

run blupf90 with clean files

• Option 2:

run preGSf90 with clean files (program saves **GimA22i**) run blupf90 with option to read **GimA22i** from the file

Reading external matrices

- BLUPF90 programs accept external matrices created outside
- <u>http://nce.ads.uga.edu/wiki/doku.php?id=user_defined_files_for_covariances_of_random_effects</u>
- File should be row, column, value in plain text format (lower OR upper triangular)

RANDOM_GROUP # genomic	Valid format	Non-valid format
2 RANDOM_TYPE user_file FILE # matrix file Gi	1 1 1 1 2 0.5 2 2 1	1 1 1 1 2 0.5 2 1 0.5 2 2 1

renf90.par

- user_file: if providing the inverse of the covariance structure
- user_file_inv: if the program has to invert the covariance structure