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Genomic Information
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Mutation  <  1%  <  SNP



Use of DNA polymorphisms as genetic markers
• Construct genetic relationships
• Parentage determination
• Identification of QTL
RFLP
Expensive

What are SNP used for?



Excitement about genomics 
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• Genotyping will become cheap
• Thousands of SNP

• Compute GEBV based on SNP
• High accuracy
• Animals with no phenotypes
• Select the best animals earlier



Genotyping became cheaper in 2008

5

• First genomic evaluation for dairy and beef cattle in 2009

• $300 in 2009 vs. $30 in 2022

• 50,000 SNP

What about statistical methods able to fit 
genomic information?



Statistical methods before genomics
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• BLUP (Henderson, 1949 - 1976)
• Best:   minimizes MSE
• Linear:   linear function of the data
• Unbiased:   𝐸 𝑢 = 𝐸($𝑢)
• Prediction:    for random effects



Henderson’s MME
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𝐲 = 𝐗𝛃 +𝐖𝐮 + 𝐞
• Model

p(𝐲, 𝐮) = p(𝐮|𝐲) p 𝐲 = p(𝐲|𝐮) p 𝐮

• Joint probability of phenotypes and EBV

• Joint probability density function of phenotypes and EBV
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Henderson’s MME for dairy in 1989
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• BLUP (Henderson, 1949 - 1976)
• Implementation for dairy in 1989

• 9.5 M animals
• 11 M lactations
• 23.5 M equations to solve
• 7.5 hours



From 1989 to 2009
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• How to add genomic information to the evaluation system in 2009?

Multistep

?



Bayesian Alphabet
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• BayesB (Meuwissen et al., 2001)

• 𝑝 𝑎0 𝜎1%
" , 𝜋 = *𝑡 0, 𝑣, 𝜎1%

" 𝑜𝑟 𝑁 0, 𝜎1%
" 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝜋)

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋

• When 𝜋 = 0, BayesB becomes BayesA

• SNP effect models =  outputs SNP effects

• BayesA (Meuwissen et al., 2001)

• All SNPs have effect on the trait (few with large effect) 𝑎0~𝑁 𝜇, 𝜎1%
"

• Different variances for each SNP



Bayesian Alphabet
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• BayesC (Habier et al., 2011)

• 𝑝 𝑎0 𝜎1" = =𝑁 0, 𝜎1" 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝜋)
0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋

• BayesR (Erbe et al., 2012)
• 𝑝 𝑎& 𝜋, 𝜎'( = 𝜋)× 𝑁 0, 0×𝜎'( + 𝜋(× 𝑁 0, 10*+×𝜎'( + 𝜋,×𝑁 0, 10*,×𝜎'( + 𝜋+×𝑁 0, 10*(×𝜎'(

• BayesRC (MacLeod et al., 2016)
• BayesR using biological information to assign SNP to classes

• High computing cost and simple models 
• After > 10 years, assumption of normality is good enough!



SNP-BLUP (ridge regression)
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• 𝑎~𝑁 0, 𝜎2$

• SNP effect model =  outputs SNP effects

𝐲 = 𝐗𝛃 + 𝐙𝐚 + 𝒆

X′X X′Z
Z′X Z′Z+I 2-

"

2."

D𝛃
Ea
= X′y
Z′y

• All SNP explain the same proportion of variance on the trait

𝐆𝐄𝐁𝐕 = 𝐙E𝐚



SNP-BLUP (ridge regression)
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• SNP effect model =  outputs SNP effects

𝐆𝐄𝐁𝐕 = 𝐙E𝐚
𝐮 = 𝐙E𝐚

Var 𝐮 = Var(𝐙𝐚)

Var 𝐮 = 𝐙 Var 𝐚 𝐙′

Var 𝐮 = 𝐙𝐙′𝜎&$

𝜎&$ =
𝜎%$

2∑' ( ")*+ )𝑝'(1 − 𝑝'

• All SNP explain the same proportion of variance on the trait

Var 𝐮 = 𝐙𝐙′
𝜎!"

2∑# $ %&'( )𝑝#(1 − 𝑝#

Var 𝐮 =
𝐙𝐙′

2∑# $ %&'( )𝑝#(1 − 𝑝#
𝜎!"

𝐆 =
𝐙𝐙′

2∑# $ %&'( )𝑝#(1 − 𝑝#

Genomic 
relationship matrix 
VanRaden (2008)

Var 𝐮 = 𝐆𝜎!" GBLUP assumption!!!



Understanding SNP variance

𝜎&$ =
𝜎%$

2∑' ( ")*+ )𝑝'(1 − 𝑝'

How do we get the variance of SNP effects, 𝜎&$ ?

1) You can estimate it (Bayes C, REML)

2) You can « guess » from the genetic variance 𝜎%$

SNP 1 contributes 2𝑝"𝑞"𝑎"$ to the genetic variance

SNP 2 contributes 2𝑝$𝑞$𝑎$$ to the genetic variance

…

𝜎%$ = 2@𝑝'𝑞'𝑎'$ ≈ 2 @𝑝'𝑞' × 𝑎'$ ≈ 2 @𝑝'𝑞' 𝜎&$

Reversing the expression gives

𝜎&$ ≈
𝜎%$

2 ∑𝑝'𝑞'



GBLUP: equivalent to SNP-BLUP

15

𝐲 = 𝐗𝛃 +𝐖𝐮+ 𝒆

X′X X′W
W′X W′W+𝐆&𝟏 2-

"

2/"

D𝛃
Eu
=
X′y
W′y

• 𝑢~𝑁 0, 𝜎%$

• GEBV-based model =  outputs genomic predictions

𝐆 =
𝐙𝐙@

2∑𝑝0(1 − 𝑝0) VanRaden (2008)
Bernardo (1994)
Nejati-Javaremi et al. (1997)



Genomic relationship matrix
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𝐆 =
𝐙𝐙@

2∑𝑝0(1 − 𝑝0)
=
(𝐌 − 𝟐𝐏)(𝐌 − 𝟐𝐏)@

2∑𝑝0(1 − 𝑝0)

Genotypes {0,1,2}
Shifted to refer to the 

average of a population 
with allele frequencies p

Scaled to refer to the 
genetic variance of a 

population with allele 
frequencies p



What are genomic relationships?
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• True relationships: two individuals are genetically identical (for a trait) if they carry the 
same genotype at the causal QTL or genes

• Relationships were conceived as standardized covariances (Fisher, Wright) 
• 𝐶𝑜𝑣 𝑢', 𝑢, = 𝑅',𝜎%$

• 𝑅', “some”	relationship
• 𝜎%$ genetic variance

• Genomic relationships: due to shared (Identical By State) alleles at causal genes
• If I share the blood group A with someone, we are like twins!
• Most of the genes are unknown
• We use proxies (SNP markers)



Early use of markers to infer A
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• A = pedigree relationships: due to shared (Identical By Descent) alleles at causal genes

• In conservation genetics

• Gather markers, then reconstruct pedigrees, then construct A

• Either estimates of Axy , or estimates of « the most likely relation » (son-daughter, cousins, whatever)

Li and Horvitz 1953, Cockerham 1969, Ritland 1996, Caballero & Toro 2002, and many others

• With abundant marker data we can do better than this



Pedigree vs. Genomic relationships
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• Identical By Descent Relationships based on pedigree are average relationships which
assume infinite loci

• « Real » IBD relationships are a bit different due to finite genome size (Hill and Weir, 2010)

• Therefore A is the expectation of realized or observed relationships

• SNPs more informative than A
• Two full sibs might have a correlation of 0.4 or 0.6

• Many markers needed to better estimate relationships
• Estimators of IBD
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Adapted from Lourenco et al. (2015)

Observed relationship

(A)

(G)

Pedigree vs. Genomic relationships
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Genomic relationships

𝐆 =
𝐙𝐙@

2∑𝑝0(1 − 𝑝0)
=
(𝐌 − 𝟐𝐏)(𝐌 − 𝟐𝐏)@

2∑𝑝0(1 − 𝑝0)

Genotypes {0,1,2}
Shifted to refer to the 

average of a population 
with allele frequencies p

Scaled to refer to the 
genetic variance of a 

population with allele 
frequencies p

If base allelic frequencies 
are used, G is an unbiased 
an efficient estimator of IBD 
realized relationships
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Some “interesting” properties of G

• If p are computed from the data
This implies that E(Breeding Values)=0

• Positive and negative inbreeding
Some individuals are more heterozygous than the average of the population 
(OK, no biological problem)

• Positive and negative genomic relationships
Individuals i and j are more distinct than an average pair of individuals in the data
Fixing negative estimates of relationships to 0 is a wrong praxis
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Some “interesting” properties of G

• VanRaden (2008)

- G can be singular if few SNP or identical genotypes (twins)

- G must be singular if number of individuals > number of SNP

• Stranden and Christensen (2011)

- G is singular if p’s are averages across the sample

𝐆 = 0.95
𝐙𝐙)

2∑𝑝#(1 − 𝑝#)
+ 0.05𝐈 𝐆 = 0.95

𝐙𝐙)

2∑𝑝#(1 − 𝑝#)
+ 0.05𝐀OR

• Blending ≈ Adding a residual polygenic effect 

𝐆 = 𝛼𝐆* + β𝐀à
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Some “interesting” properties of G

• For all matrices of the kind

• We don’t need to put the same p’s in the upper and and in the lower part

• Changing allele frequencies in 𝑷 shifts EBV’s by a constant

• Irrelevant if there is an overall mean or fixed effect in the model (Stranden and Christensen, 
2011)

• Changing allele frequencies in ,
-∑/!0!

“scales”

𝐆 =
𝐙𝐙-

2∑𝑝'(1 − 𝑝')
=
(𝐌 − 𝟐𝐏)(𝐌 − 𝟐𝐏)-

2∑𝑝'(1 − 𝑝')
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Not all individuals are genotyped
• Genomic evaluation would be simpler if all animals were genotyped
• What to do when there are genotyped and non-genotyped individuals?
• SNPs are capturing relationships
• Pedigrees give information about relationships
• Genomic and pedigree relationships can be combined in a single matrix! 

A = 𝐀"" 𝐀"$
𝐀$" 𝐆 H = A + 0 0

0 G –𝐀$$

Misztal et al., 2009

A = 𝐀"" 𝐀"$
𝐀$" 𝐀$$

Non-genotyped

Genotyped
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Not all animals are genotyped

• Genomic info can be extended to non-genotyped animals

• joint distribution of EBV for non-genotyped (u1) and genotyped (u2)

Legarra et al., 2009

Error in the 
prediction

Variance of prediction 
of genotypes for 

non-genotyped animals

𝐇 = 𝐀%% − 𝐀%"𝐀""+%𝐀"% + 𝐀%"𝐀""+%𝐆𝐀""+%𝐀"% 𝐀%"𝐀""+%𝐆
𝐆𝐀""+%𝐀"% 𝐆

Prediction generates 
a covariance

Relationships from 
genotypes
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Understanding H

• It is a projection of G matrix on the rest of individuals “so that” G matrix makes sense
• e.g. parents of two animals related in G should be related in A

• It is a Bayesian update of the pedigree matrix based on new information from genotypes

• Typically
• A in the millions
• G and A22 in the thousands
• Leads to a very efficient method of genomic evaluation: 

• Single Step GBLUP
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Some properties of H

• Always semi-positive definite

• eigenvalues are always positive or zero

• Positive definite & invertible if G is invertible

• In practice, if G is too different from A22 (wrong pedigree or genotyping), 

this gives lots of numerical problems

• If no one is genotyped, Single-step is BLUP

• If everyone is genotyped, Single-step is GBLUP



Realized relationship matrix (H)

Animal Sire Dam
1 0 0
2 0 0
3 1 2
4 1 2

1.0 0.0 0.5 0.5
. 1.0 0.5 0.5
. . 1.0 0.5
. . . 1.0

Pedigree 
Relationship 

Matrix (A)

Genomic 
Relationship 
Matrix (G)

for animals 3 and 4

1.0 0.52
. 1.0

1.004 0.0 0.507 0.507
. 1.004 0.507 0.507
. . 1.0 0.52
. . . 1.0

Realized 
Relationship 
Matrix (H)
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Single-step Genomic BLUP (ssGBLUP)
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• Because not all animals are genotyped
• 5 to 10% in large populations

X′X X′Z

Z′X Z′Z+𝐇!𝟏 𝜎#
$

𝜎%$
"𝛃
$u
= X′y
Z′y

H!1=A!1+
0 0
0 G !1– A22

!1
Aguilar et al., 2010

Christensen and Lund, 2010



Combining two sources of relationships
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• A
• Contains expected relationships
• Is limited by the pedigree depth and completeness
• Depends on accuracy of recording pedigrees

• G
• Contains number of alleles shared between animals weighted by heterozygosity
• No limitations regarding to the number of past generations
• Depends on allele frequency and quality of genomic data



Combining two sources of relationships
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• Tuning
• Base of G is genotyped animals
• Base of A is founders of the pedigree
• For SSGBLUP, Vitezica et al. 2011 modeled a mean in genotyped animals:

𝑝 𝒖$ = 𝑁 𝟏𝜇, 𝐆
Integrate 𝜇 : 𝐆∗ = 𝑎 + 𝑏𝐆
𝜇 = (Pedigree base) – (Genomic base) 

Computed using Henderson-
Quaas’ algorithm with

inbreeding Computed using VanRaden’s
formula, which considers

inbreeding

Computed using Colleau’s
algorithm, which considers

inbreeding

H&1=A&1+
0 0
0 G &1– A22

&1

Tries to put G and A on 
the same scale



Single-step

ssGBLUP

Misztal et al. (2009)
Legarra et al. (2009)
Aguilar et al. (2010)

Christensen & Lund (2010)

ssSNPBLUP or ssBR

Fernando et al. (2014)
Liu et al. (2014)

Mantysaari & Stranden (2016)
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X′X X′Z

Z′X Z′Z+𝐇!𝟏
𝜎#$

𝜎%$
'𝛃
)u
= X′y
Z′y
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ssGBLUP and GBLUP in BLUPF90

QC of SNP data in BLUPF90


