Manual for

BLUPF90 family of programs

Ignacy Misztal (ignacy@uga.edu), Shogo Tsuruta (shogo@uga.edu), Daniela Lourenco (danilino@uga.edu), Yutaka Masuda (yutaka@uga.edu)
University of Georgia, USA
Ignacio Aguilar (iaguilar@inia.org.uy) INIA, Uruguay
Andres Legarra (andres.legarra@toulouse.inra.fr)
INRA Toulouse, France
Zulma Vitezica (zulma.vitezica@ensat.fr)
ENSAT, France

Table of Contents

Introduction 4
List of programs from Wiki page 5
Programs in a chart 6
Parameter file for application programs 7
Description of effects 8
Definition of random effects 10
Correlated effects 11
Random effects and Pedigree files. 12
Data and Pedigree files 14
Data file. 14
Pedigree file 14
Error messages in parameter file. 14
RENUMF90 parameter file 15
Basic rules for RENUMF90 parameter file. 15
Parameter file 15
Combining fields 17
Options 17
Output files. 17
Output pedigree file. 18
Example. 18
When to use which program and computing limits 23
BLUP 23
Variance components estimation 25
Combined programs 33
Genomic programs 34
PREGSF9O 34
POSTGSFGO 42
PREDF9O 45
PREDICTF90 46
Demonstration for genomic analysis 47
Examples of parameter files 52
Appendix A (single trait animal model) 69
Appendix B (multiple trait sire model) 73
Appendix C (test-day model) 76
Appendix D (multibreed maternal effect model) 80
Appendix E (random regression model) 83
Appendix F (terminal cross model) 85
Appendix G (competitive model) 87
Appendix H (genomic model) 89
Appendix I (complete genomic analysis) 100
Appendix J (custom relationship matrices) 129
Appendix K (selected programming details) 131
Modules and Libraries 134
Module DENSEOP 134
Symmetric matrices. 134
General matrices. 135
Technical details 135
Example (exdense.f90) 136
Compilation 136
Module SPARSEM 137
Introduction 137
Matrix formats 138
Matrix operations 138
Storage type. 140
Numerical accuracy. 140
Diagnostics. 140
FSPAK90 141
Module Prob 148
Subroutines/functions 148
Other functions/subroutines. 149

Introduction

BLUPF90 is a family of programs for mixed-model computations focusing on animal breeding applications. The programs can do data conditioning, estimate variances using several methods, calculate BLUP for very large data sets, calculate approximate accuracy, and use SNP information for improved accuracy of breeding values and genome-wide association studies (GWAS).
The programs have been designed with 3 goals in mind:

1. Flexibility to support a large set of models found in animal breeding applications.
2. Simplicity of software to minimize errors and facilitate modifications.
3. Efficiency at the algorithmic level.

Aside from being used in hundreds of studies, the programs are utilized for commercial genetic evaluation in dairy, beef, pigs, broiler chicken, and fish by major companies/institutions/associations in the US and beyond.

The programs are written in Fortran 90/95 and originated as exercises for a class taught by Ignacy Misztal at the University of Georgia. Over time, they have been upgraded and enhanced by many contributors. Details on programming and computing algorithms are available in an Interbull paper (Misztal, 1999) and as course notes. Old versions of source codes for nearly all programs are available here.

Additional information about the programs is available at http://nce.ads.uga.edu/wiki/doku.php as wiki pages. There is a BLUPF90 discussion group at groups.io.

List of programs from Wiki page

The latest binaries are available here.
All binaries for Linux, Mac OSX, and Windows are updated frequently. Always check for the most updated versions.

The programs support mixed models with multiple-correlated effects, multiple animal models and dominance.

- BLUPF90 - BLUP in memory
- REMLF90 - accelerated EM REML
- QXPAK - joint analysis of QTL and polygenic effects (M. Perez-Enciso) QxPak web page
- AIREMLF90 - Average Information REML with several options including EM-REML and heterogeneous residual variances (S. Tsuruta)
- CBLUP90 - solutions for bivariate linear-threshold models
- CBLUP90THR - as above but with thresholds computed and many linear traits (B. Auvray)
- CBLUP90REML - as above but with quasi REML (B. Auvray)
- GIBBSF90 - simple block implementation of Gibbs sampling
- GIBBS1F90 - as above but faster for creating mixed model equations only once
- GIBBS2F90 - as above but with joint sampling of correlated effects
- GIBBS3F90 - as above with support for heterogeneous residual variances
- POSTGIBBSF90 - statistics and graphics for post-Gibbs analysis (S. Tsuruta)
- THRGIBBSF90 - Gibbs sampling for any combination of categorical and linear traits (D. Lee)
- THRGIBBS1F90 - as above but simplified with several options (S. Tsuruta)
- THRGIBBS3F90 - as above with heterogeneous residual variances for linear traits
- RENUMF90 - a renumbering program that also can check pedigrees and assign unknown parent groups; supports large data sets
- INBUPGF90 - a program to calculate inbreeding coefficients with incomplete pedigree (I. Aguilar)
- SEEKPARENTF90 - a program to verify paternity and parent discovery using SNP markers (I. Aguilar)
- PREDICTF90 - a program to calculate adjusted y, \hat{y}, and residuals (I. Aguilar)
- PREDF90 - a program to predict direct genomic value (DGV) for animals based on genotypes and SNP solution
- QCF90 - a quality-control tool on genotypes and pedigree information (Y. Masuda)
- BLUPF90+ - a combined program of blupf90, remlf90, and airemlf90
- GIBBSF90+ - a combined program of gibbs2f90, gibbs3f90, thrgibbs1f90, and thrgibbs3f90

Available by request

- MRF90 - Method R program suitable for very large data sets; contact T. Druet.
- COXF90 - Bayesian Cox model - contact J. P. Sanchez (JuanPablo.Sanchez@irta.cat)
- BLUPF90HYP - BLUPF90 with hypothesis testing (F and Chi2 tests) - contact J. P. Sanchez as above

Available only under research agreement

- BLUP90IOD2 - BLUP by iteration on data with support for very large models (S. Tsuruta)
- CBLUP90IOD - BLUP by iteration on data for threshold-linear models
- ACCF90 - approximation of accuracies for breeding values
- BLUP90MBE - BLUP by iteration on data with support for very large models for multi-breed evaluations
- BLUP90ADJ - BLUP with a data preadjustment tool

Included in application programs

- PREGSF90 - genomic preprocessor that combines genomic and pedigree relationships (I. Aguilar)
- POSTGSF90 - genomic postprocessor that extracts SNP solutions after genomic evaluations (single step, GBLUP) (I. Aguilar)

Other programming contributions were made by Miguel Perez-Enciso (user_file) and François Guillaume (Jenkins hashing functions).

Programs in a chart

Application programs (BLUP*, *REMLF90, THRGIBBS*, GIBBS*, POSTGIBBSF90, PREGSF90, POSTGSF90, and PREDICTF90) are driven by parameter files and require data files with effects renumbered from 1 consecutively. Some programs (PREDF90, QCF90, and SEEKPARENTF90) use command line instead of a parameter file.

Renumbering and quality control can be done by RENUMF90, which is also driven by a parameter file. Separation of renumbering and application programs allows supporting complicated models.

Some models are not directly supported by RENUMF90 and require tweaking the parameter file in the application programs.

Parameter file for application programs

The parameter file has keywords that are fixed and cannot be changed followed by values, with the following structure (the following example comes from a 2-trait maternal model):

Keywords*	Description
DATAFILE	Name of file with phenotypes; free Fortran format (space-delimited file)
file.dat	
NUMBER OF TRAITS	Number of traits
2	
NUMBER OF EFFECTS	Number of effects in a model except for residual
6	
OBSERVATIONS(S)	Position(s) of observations in data file
12	
WEIGHTS	Position of weight on observations if used; otherwise blank
2	means that the weight is in column 2, and residual variance (R) is set to R /weight.
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]	
4410 cross	$4 \mathbf{4}=$ crossclassified effect positions in data file for 2 traits; $\mathbf{1 0}=$ levels
50100 cross	$5 \mathbf{0}=$ crossclassified effect, positions for 2 traits; $\mathbf{1 0 0}=$ levels
661 cov	66 = covariable positions in data file
$7710 \operatorname{cov} 44$	$7 \mathbf{7}=$ covariable nested in effect position 4; $\mathbf{1 0}=$ levels
881000 cross	$8 \mathbf{8}$ = crossclassified effect positions for 2 traits; $\mathbf{1 0 0 0}=$ levels
091000 cross	09 crossclassified effect positions for 2 traits; $1000=$ levels
RANDOM_RESIDUAL_VALUES	Residual variance or residual covariance matrix
101	For 2 trait model
110	
RANDOM_GROUP	List of effect numbers that form a group
56	For correlated random effects 56
RANDOM_TYPE	Type of random effect
add_animal	diagonal, add_sire, add_an_upg, add_an_upginb, par_domin, or user_file
FILE	Pedigree file or other file associated with random effect; blank if none
file.ped	
(CO)VARIANCES	(Co)variance matrix for each random effect
10101	For 2 trait, maternal model
11001	
0000	
11010	

*Keywords need to be typed exactly (up to 20 characters).
Hint: When preparing a new parameter file, consider modifying an existing file.

Note that this parameter file is for the application programs (BLUPF90, AIREMLF90, GIBBSF90, etc.) and not for RENUMF90. This program needs a different type of parameter file. See page 15 for details.

Description of effects

The effects are specified after the keyword:

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]

Each line contains the following:

- Position(s) of each effect in the data file; t positions for t traits
- Number of levels (assumed consecutive from 1)
- Type of effect: "cross" for crossclassified, and "cov" for covariable
- crossclassified uses integer number from 1
- covariable uses integer or real numbers
- For nested covariables, the following number (or t numbers for t traits) indicates the position of nesting in the data file
- Text after \# can be used as a comment

Data and pedigree file should not have header; columns should be separated by at least one space (no TAB); hash (\#) is interpreted as a comment initiator and should not be present inside the data and pedigree files. See page 14 for further details.

Consider the following dataset (copied to file.dat without the header):

i	j	k	$y 1$	y^{2}	$x 1$
2	2	3	4.30	5.67	22.40
1	2	2	2.76	3.20	18.00
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
3	1	1	2.20	5.30	7.25

Let i go from 1 to $50, \mathrm{j}$ from 1 to 80 , and k from 1 to 200 . The model:

$$
y 1_{i j}=a_{j}+b_{i}+c x 1+e_{i j}
$$

will be specified in the parameter file as:

DATAFILE

file.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
3
OBSERVATIONS(S)
4
WEIGHTS

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
$\mathbf{2 8 0}$ cross \# position 2, 80 levels

```
150 cross # position 1, }50\mathrm{ levels
6 cov # covariable on position 6, one level
```

\qquad

By definition, a regular covariable has one level (i.e., a slope as regression).

For a similar model but with a nested covariable:

$$
y 1_{i j}=a_{j}+b_{i}+c_{i} x 1+e_{i j}
$$

The description will change to:

```
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
20}\mathrm{ cross # position 2,80 levels
1 50 cross # position 1,50 levels
650 cov 1 # covariable on position 6 nested in position 1; 50 levels
```

Assume a two-trait model:

$$
\begin{aligned}
& \mathrm{y} 1_{\mathrm{ij}}=\mathrm{a} 1_{\mathrm{j}}+\quad \mathrm{c} 1_{\mathrm{i}} \mathrm{x} 1+\mathrm{e} 1_{\mathrm{ij}} \\
& \mathrm{y} 2_{\mathrm{ij}}=\quad \mathrm{b} 2_{\mathrm{i}}+\mathrm{c} 2_{\mathrm{i}} \mathrm{x} 1+\mathrm{e} 2_{\mathrm{ij}}
\end{aligned}
$$

This corresponds to:
......
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
3

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]

2080 cross \# position 2 for trait 1 only, 80 levels
0150 cross \# position 1 for trait 2 only, 50 levels
6650 cov 11 \# covariable on position 6 for two traits nested in position 1
" 0 " in effect definitions means missing effect per trait.

The first two effects in the two-trait model above can be merged:

```
NUMBER_OF_EFFECTS
2
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
2 180 cross # positions 2 and 1 for traits 1 and 2, 80 is max(50,80) levels
6 6 50 cov 11 # covariable in position 6 for two traits nested in position 1
```


Definition of random effects

RANDOM_GROUP defines one group of random effects. A group is one effect or multiple (correlated) effects that share the same covariance structure, e.g., direct-maternal effect or random regressions.

The structure of RANDOM GROUP is:

RANDOM_GROUP	Corresponding to the effect number specified above; " 5 " means that the $5^{\text {th }}$ effect is random. Or " $56^{\prime \prime}$ means that $5^{\text {th }}$ and $6^{\text {th }}$ are correlated random effects.
or	
RANDOM_GROUP Corresponding to the effect number specified above; " 56 " means that $5^{\text {th }}$ and $6^{\text {th }}$ $\mathbf{5} \mathbf{6}$ are correlated random effects.	

RANDOM_TYPE defines a covariance structure: diagonal $\operatorname{var}()=s \otimes \mathbf{I}$ or \mathbf{G} where s is a variance and \mathbf{G} is a covariance matrix. For other types, see "Random effects and Pedigree files" on page 12.

Assume a model:
y = farm + animal_additive + permanent_environment + error
with var(animal_additive $)=\mathbf{A} \otimes 2.5, \operatorname{var}($ permanent_environment $)=\boldsymbol{I} \otimes 5.1, \operatorname{var}($ error $)=\boldsymbol{I} \otimes 13.7$

With these effects:
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
3100 cross \# effect 1: farm
21000 cross \# effect 2: additive genetic
21000 cross \# effect 3: permanent environment
RANDOM_RESIDUAL_VALUES
13.7

RANDOM_GROUP
2 \# this is for effect 2 on the effect list
RANDOM_TYPE
add_animal \# additive genetic
FILE
file.ped \# name of pedigree file
(CO)VARIANCES
2.5

RANDOM_GROUP
3 \# effect 3 on the effect list above
RANDOM_TYPE
diagonal \# permanent environment
FILE
\# no file associated with diagonal structures
(CO)VARIANCES
5.1

Correlated effects

Assume a model:

$$
\begin{aligned}
& y=\text { farm + season + direct + maternal + error } \\
& \operatorname{var}(\text { direct, maternal })=A \otimes\left[\begin{array}{ll}
5 & 1 \\
1 & 6
\end{array}\right]
\end{aligned}
$$

with the effects as specified:

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]

3	100 cross	\# effect 1: farm
4	4 cross	\# effect $2:$ season
2	1000 cross	\# effect 3: direct
2	1000 cross	\# effect 3: maternal

The distribution of the random effects is specified below:
...
RANDOM_GROUP
34 \# direct and maternal effects
RANDOM_TYPE
add_animal \# additive genetic
FILE
file.ped \# name of pedigree file
(CO)VARIANCES
51
16
...

Random regression models may have many correlated random effects. Assume a data file with the following positions:
1 to 4: polynomials
5: animal number (1000 levels)
6: herd year season (50 levels)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
650 cross \# herd year season
11000 cov 5 \# first polynomial nested within the animal effect position 5
$21000 \operatorname{cov} 5$ \# second polynomial nested within the animal effect position 5
$31000 \operatorname{cov} 5$ \# third polynomial nested within the animal effect position 5
$41000 \operatorname{cov} 5$ \# fourth polynomial nested within the animal effect position 5
....
RANDOM_GROUP
2345 \# all covariables are correlated (effects 2, 3, 4, and 5 on the list above)
RANDOM_TYPE
add_animal \# additive genetic
FILE
file.ped \# name of pedigree file
(CO)VARIANCES
(4×4 matrix)

Random effects and Pedigree files

There are a few types of additive genetic effects, each with a different pedigree format.
a) additive sire (add_sire)

The pedigree file has the following format:
sire number, sire's sire number, sire's maternal grandsire (MGS) number
where unknown sire's sire and/or sire's MGS numbers are replaced by 0.
b) additive animal (add_animal)

The pedigree file has the following format:
animal number, sire number, dam number
where unknown sire and/or dam numbers are replaced by 0.
c) additive animal with unknown parent groups (add_an_upg)

The pedigree file has the following format:
animal number, sire number, dam number, parent code
where sire and/or dam numbers can be replaced by unknown parent group numbers parent code = 3 - number of known parents:

1 (both parents known)
2 (one parent known)
3 (both parents unknown)
d) additive animal with unknown parent groups and inbreeding (add_an_upginb)

The pedigree file has the following format:
animal number, sire number, dam number, inb/upg code
where sire and/or dam numbers can be replaced by unknown parent group numbers
inb/upg code $=4000 /[(1+m s)(1-F s)+(1+m d)(1-F d)]$
where $\mathrm{ms}(\mathrm{md})$ is 0 whenever sire (dam) is known, and 1 otherwise, and $\mathrm{Fs}(\mathrm{Fd})$ is the coefficient of inbreeding of the sire (dam). For example, the inb/upg code for the animal with both parents known is 2000 . The code should be an integer value.
e) user provided matrix (user_file)

A file specified in FILE contains the inverse of a matrix in the following format:
row col value
as lower- or upper-triangular elements (but not full stored). The matrix is used directly by application programs. For example, to use a genomic relationship matrix G, the file needs to contain \mathbf{G}^{-1}.
f) user provided matrix with inversion (user_file_inv)

As above but the matrix in FILE is inverted by the application programs before being used. For example, to use a genomic relationship matrix G, the file needs to contain G. The inversion is by sparse matrix techniques so it is efficient for sparse matrices but slow for dense matrices.
f) additive animal with selfing (add_an_self)

The pedigree file has the following format:
animal number, sire number, dam number, number of selfing generations
where unknown sire and/or dam numbers are replaced by 0.
This option fits some breeding structures in plants.
e) parental dominance (par_domin)

The pedigree class file has the following format:
s-d s-sd s-dd ss-d ds-d ss-sd ss-dd ds-sd ds-dd code
where $x-y$ is a combination number of animals x and y, s is sire, d is dam, sd is sire of dam, etc.
Code is a number of 0 to 255 and refers to the combination of missing subclasses. If one line is: p s0 s1 s2 s3 s4 s5 s6 s7 code
then code $=\sum_{i=0}^{7}\left(a_{i} \times 2^{i}\right)$ where $a_{i}=0$ if $\mathrm{s}_{\mathrm{i}}>0$, or $a_{i}=1$ otherwise.
For example, the code for a line with all nonzero parental subclasses is 255 . For a line with only zero parental subclasses, if classes are ordered so that lines with zero parental subclasses, code $=0$. If lines are ordered so that p for parental classes with code=0 are ordered last, they may be omitted and will added automatically. The parental dominance file can be created by program RENDOMN.

Data and Pedigree files

All files are free format, with fields separated by spaces. By default, 0 is a missing value for all effects, including covariables.

Transferring a file from Windows (DOS) to Linux environment

Use "dos2unix" to convert the DOS (Windows) format to the UNIX (Linux) format if the programs show an error message while reading a file ("flip -u" can be also used instead of "dos2unix").

Data file

a. Space(s) is a delimiter. At least one space between columns is required.
b. \quad Dot (.) is just one character but not a missing value (default missing value $=0$).
c. Check the data again especially when converting from another format or software such as EXCEL, SAS, ...
d. For Gibbs sampling programs with "OPTION cont", copy the previous output files somewhere else just in case making mistakes and replacing those files.

Pedigree file

a. An original pedigree file for RENUMF90 can include alpha-numeric characters with free format.
b. Remove duplicates.
c. Use 0 for unknown parent(s).

Error messages in parameter file
a. Wrong data file name

Check outputs for the data file name and the number of records on the screen. The program will not stop if the wrong file name already exists.
b. Wrong pedigree file name

Check output for the pedigree file name and the number of animals on the screen. The program will not stop if the wrong file name exists.
c. Wrong positions or formats for observations and effects

Program may not stop and may get wrong results. Check outputs for the number of levels for each effect on the screen.
d. Missing or skipping one or more fixed lines in the parameter file Program may stop. Check the missing line.
e. Misspelling

Program may stop. Correct the wrong spelling.
f. Missing an empty last line

Program may not stop. Parameter, data, and pedigree files may need one more extra line at the end of the file.
g. (Co)variance matrix is not symmetric, not positive definite, not right sized, ... Program may not stop.
h. A good result does not mean that your parameter file is correct. Always double-check it!

RENUMF90 parameter file

Basic rules for RENUMF90 parameter file

RENUMF90 is a renumbering program to create input (data, pedigree, and parameter) files for BLUPF90 programs and provide basic statistics. Note that RENUMF90 uses a different type of parameter file as used in BLUPF90 or other programs. RENUMF90-specific parameter file should be prepared as follows.

- The file consists of pairs of keyword and the corresponding value(s). The keyword is always capital.
- First 7 keywords are mandatory and must appear in the following order: DATAFILE, TRAITS, FIELDS_PASSED TO OUTPUT, WEIGHT(S), RESIDUAL_VARIANCE and EFFECT. If you don't actually need FIELDS_PASSED TO OUTPUT and WEIGHT(S), simply leave an empty line.
- The remaining keywords are optional but appear in the specific order shown below. For example, the FILE keyword must be followed by FILE_POS (or by SNP_FILE if FILE_POS is omitted; or by PED_DEPTH if both FILE_POS and SNP_FILE are omitted, and so on).
- Several OPTION lines can be included. RENUMF90 interpret a few options. Other options are simply passed through the template parameter file for BLUPF90 (renf90.par).

Parameter file

DATAFILE
$\mathrm{f}_{1} \quad$ \# data file name - input files cannot contain character \# because it is used as a comment.
TRAITS
$\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \ldots$ \# positions of traits in data file
FIELDS_PASSED TO OUTPUT
$\mathrm{p}_{1} \mathrm{p}_{2} . . \mathrm{p}_{\mathrm{m}} \quad$ \# positions that are not renumbered; put empty line if not needed.
WEIGHT(S)
w \# position of weight - fraction to the residual variance; put empty line if not needed.
RESIDUAL_VARIANCE
R \# matrix of residual (co)variances
EFFECT
$e_{1} e_{2} e_{3} \ldots$ type form \# $e_{1} e_{2} e_{3} \ldots=$ position of this effect for each trait
\# type = 'cross' for crossclassified or 'cov' for covariables
\# form = 'alpha' for alphanumeric or 'numer' for numeric (form is only for cross)
EFFECT
$d_{1} d_{2} d_{3} \ldots$ cov $\# d_{1} d_{2} d_{3} \ldots=$ positions of covariables nested in the following cross-classified effects
NESTED
$e_{1} e_{2} e_{3} \ldots$ form $\# e_{1} e_{2} e_{3} \ldots=$ positions of cross-classified effects nested
\# form = 'alpha' for alphanumeric or 'numer' for numeric
RANDOM
random_type \# 'diagonal', 'sire' or 'animal' for random effect
OPTIONAL

$\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \ldots$	\# 'pe' for permanent environment, 'mat' for maternal, and 'mpe' for maternal permanent environment
FILE	
fped	\# pedigree file name
FILE_POS	
animal sire dam alt_dam yob	m alt_dam yob \# positions of animal, sire, dam, alternate dam (recipient dam), and year of birth in pedigree file (default 12300).
SNP_FILE	
fsnp	\# specify a SNP file with ID and SNP information; the relationship matrix will include the
	genomic information; a fsnp file should start with ID with the same format as fped, and
	SNP info needs to start from a fixed column and include digits $0,1,2$ and 5 (5 is for missing SNP);
	ID and SNP info need to be separated by at least one space; see more information in http://nce.ads.uga.edu/wiki/doku.php?id=readme.pregsf90.
PED_DEPTH	
p	\# depth of pedigree search (default 3); all pedigrees are loaded if $\mathrm{p}=0$.
GEN_INT	
min avg max	\# minimum, average, and maximum generation interval; applicable only if year of birth present in pedigree file; minimum and maximum used for pedigree checks; average used to predict year of birth of parent with missing pedigree.
REC_SEX	
sex	\# if only one sex has records, specifies which parent it is; used for pedigree checks.
UPG_TYPE	
t	\# 'yob': based on year of birth.
	\# 'in_pedigrees': the value of a missing parent should be -x, where x is UPG number that this missing parent should be allocated to; in this option, all known parents should have pedigree lines, i.e., each parent field should contain either the ID of a real parent, or a negative UPG number.
	\# 'group': it assigns the group using a user-defined group label in the pedigree file. The field of the label should be specified as the 6th item in the FILE_POS entry.
	\# 'group': as above except assigning the same groups to sires and dams.
	\# 'internal', allocation is by a user-written function custom_upg (year_of_birth,sex,ID, parent_code).
INBREEDING	
s	\# use of inbreeding coefficients to compute inb/upg code in the $4^{\text {th }}$ column of the output pedigree file. Inbreeding calculation is default in RENUMF90 \geq v1.157, even if this keyword is not used.
	\# 'pedigree': the program computes inbreeding coefficients with Meuwissen and Luo (1992) using the pedigree to be saved in renaddxx.ped; calculated inbreeding coefficients will be saved in a file "renf90.inb" with the original ID.

\# 'file': the program reads inbreeding coefficients from an external file. You should put the filename after 'file' e.g. 'file inbreeding.txt'. The file has at least 2 columns: original_ID and inbreeding value (from 0.0 to 1.0). The program skips unnecessary IDs. \# 'no-inbreeding': turn inbreeding calculation off in in RENUMF90 \geq v1.157.
(CO)VARIANCES
G \# (co)variances for animal effects or animal + maternal effects
(CO)VARIANCES_PE
GPE \# (co)variances for the PE effect
(CO)VARIANCES_MPE
GMPE \# (co)variances for the MPE effect

Combining fields

How can we specify interactions? - Combining fields or interactions. Several fields in the data file can be combined into one using a COMBINE keyword.
COMBINE a b c \# keywords COMBINE need to be on top of the parameter file (the first keyword). It can be placed after comments.
For example:
COMBINE 7234
combines content of fields 234 into field 7; the data file is not changed, only the program treats field 7 as fields 234 put together (without spaces). The combined fields can be treated as "numeric" with the total length is < 9 or "alpha". The keyword is optional but must be placed in the top of the parameter file.

Hints: type renumf90 --show-template to have a template parameter file.
type renumf 90 --version to see the version number.

Options

RENUMF90 parameter file can accept a few options. If the program detects non-RENUMF90 options, such option lines are simply transferred to renf90.par.

OPTION alpha_size nn \# new size
Changes the maximum size of character fields (default 20 characters).

OPTION max_string_readline nn
Changes the maximum length of characters in a line (default 800 characters).

OPTION max_field_readline nn
Changes the maximum number of fields capable in a line (default 100 fields).

Output files

RENUMF90 generates several files.

- renf90.par: parameter template file for BLUPF90 and other application programs
- renf90.tables: table relating the original code and the renumbered code
- renf90.dat: data file for BLUPF90
- renaddxx.ped: pedigree file for BLUPF90; $x x$ is an integer number that indicates the position of animal effect among all model effects in renf90.par. This file will be created only if RANDOM animal is specified.
- SNPfile_XrefID: cross-reference file for genomic analysis, which contains renumbered ID and original ID; SNPfile is the original SNP marker file. This file will be created only if SNP_FILE is specified.
- renf90.inb: inbreeding coefficients. This file will be created only if INBREEDING pedigree is specified.
- renf90.fields: has detailed information about the data fields.

Output pedigree file

The additive pedigree file built by RENUMF90 is renaddxx.ped. The pedigree file has the following structure:

1) animal number (from 1)
2) parent 1 number or unknown parent group number for parent 1
3) parent 2 number or unknown parent group number for parent 2
4) 3 minus number of known parents (this column is replaced by inbreeding code if INBREEDING is specified or by default in RENUMF90 $\geq \mathrm{v1.157}$)
5) known or estimated year of birth (0 if not provided)
6) number of known parents (for genotyped animals, if any: $10+$ number of known parents)
7) number of records
8) number of progenies as parent 1
9) number of progenies as parent 2
10) original animal id
```
Example
Input file - data
aa 1 10
aa 2 12
bb 1 11
cc 1 12
cc 2 14
dd 2 13
ee 2 14
```

Pedigree file - ped
aa ff ee 2004
bb hh gg 2004
cc hh ii 2004
dd ff 02004
ee ff 02002
ff $0 \quad 0 \quad 2002$
gg ff 02002
hh 0 0 2002
ii 002002
kk 0 0 2000

```
Parameter file - testpar1
# Parameter file for program renumf90; it is translated to parameter file for BLUPF90 family of programs.
DATAFILE
data
TRAITS
3
FIELDS_PASSED TO OUTPUT
1 #passing original ID to the renumbered data file
WEIGHT(S)
RESIDUAL_VARIANCE
1
EFFECT
2 cross num
EFFECT
1 cross alpha
RANDOM
animal
FILE
ped
FILE_POS
12304
PED DEPTH
3
GEN_INT
1210
UPG_TYPE
yob
20022003
(CO)VARIANCES
1
Output log
RENUMF90 version 1.157 with zlib
    testpar1
    datafile:data
    traits: 3
    fields passed: 1
R
    1.000
Processing effect 1 of type cross
item_kind=num
Processing effect 2 of type cross
item_kind=alpha
pedigree file name "ped"
positions of animal, sire, dam, alternate dam, yob, and group 1 1 2 % 3 0 4
0 0
pedigree traced to generation 3
Minimum, average and maximum generation intervals: 1 1 2 10
Unknown parent groups separated by years:
                2002
                2003
Reading (CO)VARIANCES: 1 x 1
```

```
Maximum size of character fields: 20
Maximum size of record (max_string_readline) : 8000
Maximum number of fields for input file (max_field_readline): 100
Pedigree search method (ped_search): convention
Order of pedigree animals (animal_order): default
Order of UPG (upg_order): default
Missing observation code (missing): 0
Using prime hash function
hash tables for effects set up
first 3 lines of the data file (up to 70 characters)
    aa 1 10
    aa 2 12
    bb 1 11
read 7 records
table with 2 elements sorted
added count 
table expanded from 10000 to 10000 records
Effect group 2 of column 1 with 5 levels
wrote statistics in file "renf90.tables"
Basic statistics for input data (missing value code is '0')
Pos Min Max Mean ND N
    2 1.0000 1.0000 1.5714 1.5% 0.53452 
    3 10.000 14.000 14 12.286 
Correlation matrix
        2 3
    2 1.00 0.80
    3 0.80 1.00
Counts of nonzero values (order as above)
            7 7
            7 7
random effect 2
type:animal
opened output pedigree file "renadd02.ped"
first 3 lines of the file (up to 70 characters)
        aa ff ee 2004
        bb hh gg 2004
        cc hh ii 2004
read }10\mathrm{ pedigree records
loaded 4 parent(s) in round 1
Pedigree checks
ee: younger than parent 1 by 0 years
gg: younger than parent 1 by 0 years
Unknown parent group allocation
\begin{tabular}{rrlrl} 
Equation & Group & \#Animals & Years & \\
10 & 1 & 0 & \(0-\) & 2001
\end{tabular}
```

```
11 2 8 2002- 2002
    12 3 1 2003-
Max group = 3; Max UPG ID = 12
Computations for inbreeding coefficients
Tiny negative value will be replaced with O considered as numerical error.
Wrote inbreeding file "renf90.inb" with original id
Inbreeding statistics:
the maximum inbreeding coefficient = 0.2500
average inbreeding for inbred animals = 0.2500 n = 1
    for all animals = 0.0278 n = 9
max upg
    3
Number of animals with records = 5
Number of parents without records = 4
Total number of animals = 9
Wrote parameter file "renf90.par"
Wrote renumbered data "renf90.dat" }7\mathrm{ records
Wrote field information "renf90.fields" for 4 fields in data
```


Output data file - renf90.dat

```
#observation, effect 1, animal number, original animal ID
```

10	1	4	aa
12	2	4	aa
11	1	2	bb
12	1	5	cc
14	2	5	cc
13	2	3	dd
14	2	1	ee

Output pedigree file - renadd02.ped
Animal, sire, dam, inbreeding code (3-\#unknown parents if no-inbreeding), birth year, \#known parents, \#records, \#progeny of sire, \# progeny of dam, original animal ID
1611133320021101 ee
287200020042100 bb
$\begin{array}{lllllllll}7 & 6 & 11 & 1333 & 2002 & 1 & 0 & 0 & 1\end{array}$
3612133320041100 dd
91111100020020001 ii
461200020042200 aa
61111100020020040 ff
589200020042200 cc
81111100020020020 hh

Output parameter file - renf90.par
\# BLUPF90 parameter file created by RENUMF90
DATAFILE
renf90.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
1
WEIGHT(S)

```
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
2 2 cross
3 12 cross
RANDOM_RESIDUAL VALUES
    1.0000
RANDOM_GROUP
    2
RANDOM_TYPE
add_an_upginb
FILE
renadd02.ped
(CO)VARIANCES
    1.0000
```

Output tables after renumbering - renf90.tables
Effect group 1 of column 1 with 2 levels, effect \# 1
Value \# consecutive number
131
242

Output tables after renumbering - renf90.fields

field	variable origfield		group	column random	effect	file	
1	trait	3	0	0	$*$	cov	$*$
2	renumbered	2	1	1	$*$	cross	$*$
3	renumbered	1	2	1	animal	cross	renadd02.ped
4	passed	1	0	0	$*$	cov	$*$

Output tables after renumbering - renf90.inb
ee $0.000000 \quad 1$
bb $0.000000 \quad 2$
gg 0.0000007
dd $0.000000 \quad 3$
ii $0.000000 \quad 9$
aa $0.250000 \quad 4$
ff $0.000000 \quad 6$
cc 0.0000005
hh 0.0000008

When to use which program and computing limits

BLUP

BLUPF90 sets up equations in memory. It can support a few million equations with a simple model but many fewer equations with complicated models (multiple traits, maternal effects, random regression, etc). BLUPF90 uses three solvers, chosen with options. Preconditioned conjugate gradient (PCG) is the default solver and is usually the fastest one. Successive over-relaxation (SOR) require less memory but usually converges slower. Sparse Cholesky (FSPAK) is usually the most accurate method but uses the most memory. The following options are available:

OPTION conv_crit 1e-12

Sets convergence criteria (default 1e-10).
OPTION maxrounds 10000
Sets maximum number of rounds (default 5000).
OPTION solv_method FSPAK
Selection of solving method: FSPAK, SOR, or PCG (default PCG).
OPTION r_factor 1.6
Sets relaxation factor for SOR (default 1.4). This factor helps speeding up convergence if the value is optimal; non-optimal values lead to poor convergence. It should be within $[0,2]$.
OPTION sol se
Stores solutions and standard errors. If this option is used, the solving method will turn to FSPAK. OPTION blksize 3
Sets block size for preconditioner (default 1) to accelerate convergence (usually 2 to 5 times faster). For a multiple-trait model, use the number of traits.
OPTION use_yams
Runs the program with YAMS (modified FSPAK). The computing time can be dramatically improved compared to when solv_method is FSPAK.
OPTION hetres_int 510
The position (5) to identify the interval in the data file and the number of intervals (10) for heterogeneous residual variances as used in GIBBS3F90.
OPTION fixed_var file
Combined with hetres_int, heterogeneous residual variances are read from file. The file has to contain residual (co)variances for each interval class.
OPTION snp_p_value
Computes the elements of the inverse of the Mixed Model Equations that are needed for exact GWAS with p-values using postGSf90. This requires quite a lot of memory and time.

BLUP901OD2 uses an iteration on data algorithm. It can handle hundreds of millions of equations with complicated models in a reasonable time. However, it is only available based on a research agreement with UGA. The following options are available:

OPTION conv_crit 1e-12

Sets convergence criteria (default 1e-12).
OPTION maxrounds 10000
Sets maximum number of rounds (default 5000).
OPTION blksize 3
Sets block size for preconditioner (default 1). Usually blksize number will be the same as the number of traits.
OPTION init_eq 10
Sets the number of effects to be solved directly (default 0).
OPTION solv_method FSPAK
Solving method for initial equations (default DIRECT).
OPTION tol 1d-12
Tolerance to get a positive definite matrix (default 1d-12).
OPTION residual
y-hat and residuals will be included in "yhat_residual".
OPTION avgeps 50
Using the last 50 average eps for convergence.
OPTION cont 1
Restarts the program from the previous solutions.
OPTION missing -1
Sets the missing value (default 0).
OPTION restart 100
Sets the number of iteration to recompute residuals (default 100).
OPTION prior_solutions
Using the previous solution file to start the iteration. Additional software is required to use this option.
OPTION random_upg 12
Sets the UPG random. " 1 " is the computational algorithm used; only algorithm 1 is implemented. " 2 " is the weight (γ) for the group effects, the weight will be inverted (e.g., 1/2=0.5).
OPTION SNP_file snp
Specifies the SNP file name snp to use genotype data.
OPTION origID
Stores solutions with the original ID. The output is trait effect level original_id solution, and is stored in solutions.original.

Variance components estimation

There is not a single best choice for variance component estimation. The programs below offer choices for simple and complicated models. For advice on what works best under your circumstances, check this paper "Reliable computing in estimation of variance components".

REMLF90 uses expectation maximization (EM) REML. It is the most reliable algorithm for most problems but can take hundreds of rounds of iterations. REMLF90 was found to have problems converging with random regression models. In this case, using starting variances that are too large than too small usually helps. Also, EM does not calculate standard errors for the estimates. The following options are available:

OPTION conv_crit 1d-12

Convergence criterion (default 1d-12).
OPTION maxrounds 10000
Maximum rounds (default 5000).
OPTION sol se
Stores solutions and standard errors (se).
OPTION residual
y-hat and residuals will be included in "yhat_residual".
OPTION missing -999
Specifies missing observations (default 0).
This is only for data, not pedigree (always 0 for missing pedigrees). There is no missing covariable, so 0 is treated as a level.
OPTION constant_var 512
5: effect number, 1: first trait number, 2: second trait number implying the covariance between traits 1 and 2 for effect 5 is fixed.
OPTION SNP_file snp
Specifies the SNP file name snp to use genotype data.
OPTION use_yams
Run the program with YAMS (modified FSPAK). The computing time can be dramatically improved.
AIREMLF90 uses Average Information (AI) REML. It usually converges much faster but sometimes does not converge. Very slow convergence usually indicates that the model is over parameterized, and there is insufficient information to estimate some variances. AI REML calculates standard errors for the estimates. The following options are available:

OPTION conv_crit 1d-12

Convergence criterion (default 1d-12).
OPTION maxrounds 500
Maximum rounds (default 5000). When it is zero, the program calculates BLUP without running REML.

OPTION EM-REML 10

Runs EM-REML for the first 10 rounds to get initial variances within the parameter space (default 0).

OPTION tol 1d-18

Tolerance (or precision) for positive definite matrix and G-inverse subroutines (default 1d-14).
OPTION sol se
Stores solutions and standard errors (se).
OPTION missing -1
Sets the missing observation (default 0).
OPTION constant_var 512
5: effect number, 1: first trait number, 2: second trait number implying the covariance between traits 1 and 2 for effect 5 is fixed.
OPTION use_yams
Runs the program with YAMS (modified FSPAK). The computing time can be dramatically improved.
OPTION fact_once memory
Saves the Cholesky factor of LHS in memory. It greatly improves the computing time instead of memory consumption.
OPTION fact_once file
Saves Cholesky factor of LHS in a temporary file. It improves the computing time without extra memory. OPTION approx_loglike
Skips the exact computation of log-likelihood. It would improve the computing time.

Heterogeneous residual variances for a single trait

OPTION hetres_pos 1011
Specifies the positions of covariables.
OPTION hetres_pol 4.0 0.1 0.1
Initial values of coefficients for heterogeneous residual variances. Use $\operatorname{In}(a 0, a 1, a 2, \ldots)$ to make these values. When the number of positions = the number of polynomials, the regressions do not include the intercept (e.g., linear spline).

Heterogeneous residual variances for multiple traits (the convergence will be very slow)

OPTION hetres_pos 10101111
Specifies positions of covariables (trait first).
OPTION hetres_pol 4.04.0 0.1 0.1 0.01 0.01
Initial values of coefficients for heterogeneous residual variances using $\ln (a 0, a 1, a 2, \ldots)$ to make these values (trait first). "4.0 4.0" are the intercept for first and second traits. "0.1 0.1" could be linear and "0.01 $0.01^{\prime \prime}$ could be quadratic. To transform back to the original scale, use $\exp \left(a 0+a 1^{*} \times 1+a 2^{*} \times 2\right)$.
OPTION SNP_file snp
Specifies the SNP file name snp to use genotype data.

Standard deviations for (co)variance functions including heritability

OPTION se_covar_function label function
Calculates SD for (co)variance functions by repeated sampling of parameter estimates from their
asymptotic multivariate normal distribution, following idea presented by Meyer and Houle 2013. For details, see documentation at http://nce.ads.uga.edu/wiki/doku.php?id=readme.aireml.

GIBBSxF90 programs implement Bayesian methods. These methods potentially have better statistical properties. Also they are more stable and use less memory for complicated models. After running any of the Gibbs sampling programs, samples can be analyzed (posterior means, SD, and convergence parameters) with the POSTGIBBSF90 program.
In practical cases, results from Gibbs samplers and REML are similar. Choose one or the other based on computing feasibility. If there are large differences beyond sampling errors, this indicates problems usually with the Gibbs sampler. Try longer chains or different priors.

Gibbs samplers may be slow to achieve convergence if initial values are far away from those at convergence, e.g., 100 times too low or too high. Before using more complicated models, Karin Meyer advocates using a series of simpler models.

GIBBS1F90 can run models with over 20 traits. However, if models are different per trait, the lines due to effects need to be modified. Also, with too many differences in models among traits, the program becomes increasingly slower.

GIBBS2F90 adds joint sampling of correlated effects. This results in faster mixing with random regression and maternal models. Memory requirements and CPU time per round are somewhat higher than in gibbs1f90.

Interactive inputs:
number of samples and length of burn-in?
In the first run, if you have no idea about the number of samples and burn-in, just type your guess (10000 or whatever) for samples and (0) for burn-in. You may need 2 or 3 runs to figure out the convergence.

Give \mathbf{n} to store every \mathbf{n}-th sample?

Gibbs samples are highly correlated, so you do not have to keep all samples (every 10th, 20th, 50th, ...).

The following options are available for GIBBSxF90:
OPTION fixed_var all 123
Stores all solutions and posterior means and SD for effects 1, 2, and 3 are stored in "all_solutions" and in
"final_solutions" every round using fixed variances. Without numbers, all solutions for all effects are stored.
OPTION fixed_var mean 123
Posterior means and SD for effects 1, 2, and 3 in "final_solutions" using fixed (known) variances.
OPTION solution all 123
Stores all solutions and posterior means and SD for effects 1, 2, and 3 in "all_solutions" and in "final_solutions" every round. Without numbers, all solutions for all effects are stored.

Caution: this option will create a huge output solution file when you run many rounds and/or use a large model.

OPTION solution mean 123

Posterior means and SD for effects 1, 2, and 3 are stored in "final_solutions".
OPTION cont 10000
10000 is the number of samples run previously when restarting the program from the last run.
OPTION prior 5 2-1 5
The (co)variance priors are specified in the parameter file. Degree of belief for all random effects should be specified using the following structure:
OPTION prior eff1 db1 eff2 db2 ... effn dbn -1 dbres; where eff x corresponds to the effect number and dbx to the degree of belief for this random effect, -1 corresponds to the degree of belief of the residual variance. In this example, 2 is the degree of belief for the 5 th effect, and 5 is the degree of belief for the residual.

OPTION seed 123321
Two seeds for a random number generator can be specified.
OPTION SNP_file snp
Specifies the SNP file name snp to use genotype data.

GIBBS3F90 adds estimation of heterogeneous residual covariances in classes. The computing costs usually increase with the number of classes.

OPTION hetres_int 510
The position (5) to identify the interval in the data file and the number of intervals (10) for heterogeneous residual variances.

Other options are the same as for GIBBS1F90 and GIBBS2F90. For fixed_var all or fixed_var mean, heterogeneous residual variances are read from a file 'hetres'. This file name cannot be changed.

THRGIBBS1F90 is a Gibbs sampling program to analyze categorical and continuous traits simultaneously; categorical traits can be censored. The following options are available:

OPTION cat 0025

" 0 " indicates that the first and second traits are linear. " 2 " and " 5 " indicate that the third and fourth traits are categorical with 2 (binary) and 5 categories.
OPTION thresholds 0.0 1.0 2.0
Set the fixed thresholds. No need to set 0 for binary traits.
OPTION residual 1
Set the residual variance $=1$.
OPTION save_halfway_samples 5000
The program saves every "5000" samples to restart or recover the job right after the last saved samples. It is useful when the program accidentally stopped.

OPTION censored 10

Negative values of the last category in the data set indicate censored records. "10" determines that the first categorical trait is censored and the second categorical trait is uncensored.

Using the following options for ordered categorical data with right censored records:

OPTION cat 0025

OPTION censored 10
The data file may look like

traits:	1	2	3	4
	1.71	11.1	1	1
	2.22	15.2	0	5
	3.29	16.4	2	1
	1.95	14.7	1	3
	2.25	20.8	-2	4
	3.64	19.2	1	5
	1.99	13.3	-1	2

Columns 1 and 2 are observations for linear traits and columns 3 and 4 are traits for 2 categories (binary) with censored records (negative values) and 5 categories.

Other options are the same as for GIBBS1F90 and GIBBS2F90.

THRGIBBS3F90 works as THRGIBBS1f90 but with the estimation of heterogeneous residual covariances in classes as described for GIBBS3F90.

POSTGIBBSF90 is a program to calculate posterior means and SD and diagnose the convergence of the Gibbs chain. The program reads "gibbs_samples" and "fort.99" files from Gibbs sampling programs.

Read 1000 samples from round 10 to 10000

Burn-in?
1000
\# in the first run, type 0 for burn-in to include all samples.

Give n to read every n -th sample? (1 means read all samples)
10 \# Type the same number used with a Gibbs sampling program.
\# You should not type 1 unless you have typed 1 in the Gibbs sampling program.
\# samples after burn-in = 9000

Input files:
gibbs_samples, fort.99, and other files used in a parameter file from (THR)GIBBSxF90
Output files:
postgibbs_samples, postout, postmean, postsd

postgibbs_samples

A text file containing all Gibbs samples from gibbs_samples for other software (EXCEL, SAS, R, ...) to calculate posterior means and SD, and to create graphs.

```
postmean
    Posterior means
postsd
    Posterior standard deviations
postout
```


Pos. eff1 eff2 trt1 trt2					PSD	Mean	PSD		Geweke diagnostic	Autocorrelations			Independent \# batches
								(95\%)		lag: 1	10	50	
1	4	4	1	1	0.1144	0.9889	0.7648	1.213	-0.02	0.853	0.188	0.049	50
2	4	4	1	2	0.1182	1.006	0.7742	1.237	-0.11	0.828	0.111	-0.066	50
3	4	4	2	2	0.1656	1.66	1.335	1.984	0.06	0.828	0.108	-0.021	36
4	0	0	1	1	0.1967	24.47	24.09	24.86	-0.01	0.034	0.029	-0.062	450
5	0	0	1	2	0.1643	11.84	11.51	12.16	0.03	0.032	-0.006	-0.016	450
6	0	0	2	2	0.2429	30.1	29.62	30.57	-0.02	0.07	-0.014	0.037	180

where
"Pos."
position of each parameter in the parameter file.
"eff1" and "eff2"
effect number in the parameter file.
"trt1" and "trt2"
trait number in the parameter file (0 for residual).
"MCE"
Monte Carlo Error.
"Mean"
posterior means.
"HPD interval (95\%)"
95\% Highest Probability Density.
"Effective sample size"
at least >10 is recommended; > 30 may be better.
"Median"
median of Gibbs samples.
"Mode"
when the distribution of the samples is not normal, "Mean" and "Mode" could be different.
"Independent chain size"
number of independent cycles of Gibbs samples.
"PSD"
Posterior Standard Deviation.
"PSD interval (95\%)"
95\% Posterior Standard Deviation interval.
"Geweke diagnostic"
the ratio between the first and second halves of the samples should be <1.0, but it may not be helpful because it is < 1.0 most of the time.
"Autocorrelations"
autocorrelations between two lags. High correlation implies samples are not independent.
"Independent \# batches"

Hint 1: when eff1, eff2, trt1, trt2 are all -1, the values presented are for thresholds (if THRGIBBSXF90 is used).

Choose a graph for samples (=1) or histogram (=2); or exit (= 0)
1
positions
123 \# choose from the position numbers 1 through 6

If the graph is stable (not increasing or decreasing), the convergence is met. All samples before that point should be discarded as burn-in.
print $=1$; other graphs $=2$; or stop $=0$
2
Choose a graph for samples (= 1) or histogram (= 2); or exit (= 0)
2
Type position and \# bins
120

The distribution should be usually normal (Mean = Mode = Median). print $=1$; other graphs $=2$; or stop $=0$
0
*** Log Marginal Density for Bayes Factor *** after 900 burn-in
$\log (p)=-179448.742766031$

This value could be used when calculating Bayes Factor and/or DIC.

Combined programs

BLUPF90+

This software combines BLUPF90, REMLF90, and AIREMLF90.
It has some new features such as the computation of accuracies of (G)EBV based on PEV, and the ability to save solutions with original ID.
The default of this software is to run BLUP, unless variance components estimation options are used.
Hint: type blupf90+ --help to see all the BLUPF90+ options or blupf90+ --help-genomic to see all the genomic options BLUPF90+ can take.

Specific options

OPTION method VCE
Runs AIREMLF90 for variance component estimation.
OPTION EM-REML x
Runs EM-REML (REMLF90) for first x rounds to get initial variances within the parameter space (default $0)$.
OPTION store_accuracy eff
Stores reliabilities based on PEV, where eff is the number of the animal effect. By default, it uses inbreeding (F) in the denominator of the reliability formula: reliability $=1-\mathrm{PEV} /\left(\sigma_{u}^{2}(1+F)\right)$. It uses inbreeding based on the relationship matrix that is being used in the mixed model equations.
OPTION type 1.0
Select 1.0 for dairy cattle (Reliability) or 0.5 for beef cattle (BIF accuracy) (default 1.0).
OPTION correct_accuracy_by_inbreeding filename
filename is the name of the inbreeding file if other than renf90.inb
OPTION correct_accuracy_by_inbreeding_direct 0
This option turns off the inbreeding correction in the reliability formula.
OPTION origID
Stores solutions with the original ID. The output is trait effect level original_id solution, and is stored in solutions.original.

Click here for more details on BLUPF90+

GIBBSF90+

This software combines GIBBS1F90, GIBBS2F90, GIBBS3F90, THRGIBBS1F90, and THRGIBBS3F90.
It takes any options from the above Gibbs programs.
Click here for more details on GIBBSF90+

Genomic programs

PREGSF90

PreGSF90 is an interface program to the genomic module to process the genomic information for the BLUPF90 family of programs. This software performs quality control of genomic data and constructs and inverts the genomic relationship matrix (\mathbf{G}) and the pedigree relationship matrix for genotyped animals (\mathbf{A}_{22}). When the inverse of the relationship matrix based on the pedigree information (A) in the mixed model equations is replaced by the inverse of the realized relationship matrix (\mathbf{H}), which combines pedigree and genomic information, BLUP becomes single-step GBLUP (ssGBLUP). The main difference between \mathbf{A}^{-1} and \mathbf{H}^{-1} is the structure of $\mathbf{G}^{-1}-\mathbf{A}_{22}^{-1}$ added for the genotyped animals. Some of the options for PREGSF90 can be also used with BLUPF90, (AI)REMLF90, GIBBS1F90, GIBBS2F90, GIBBS3F90, THRGIBBS1F90, and BLUP90IOD2.

Input files

OPTION SNP_file <file>
This option invokes the genomic routine in the application programs. The SNP file should contain Field 1 - animal ID with the same format as in pedigree file
Field 2 - genotypes with $0,1,2$, and 5 (missing) or real values for gene content (or genotype probability) 0.12, ...

Two Fields (animal ID and SNP) need to be separated by at least one space, and Field 2 should have fixed format (i.e., all rows of genotypes should start at the same column number or position).

80	21101011002012011011010110111111211111210100
8014	21110101511101120221110111511112101112210100
516	21100101202252021120210121102111202212111101
181	21110111112201120550200020101022212211111100

The renumbered ID file for genotypes named after the genotype file, e.g., file_XrefID, is created by RENUMF90 (using the SNP file), containing the renumbered ID and the original ID, which follows the same order as in the SNP file:

```
173280
84748014
406 516
```

9441181

The pedigree file from RENUMF90 looks like

1732	11010	10584	1	3	12	1	0	0
80								
8474	8691	9908	1	3	12	1	0	0
8014								
406	8691	9825	1	3	12	1	0	2
516								
9441	8691	8829	1	3	12	1	0	0
181								

Map file for SNP can be used as optional:

OPTION map_file <file>: reads SNP map information from the file.
The file should have a header with the following column names:
SNP_ID \#identification of the SNP (alphanumeric)

CHR \#chromosome number (numeric), starting from 1
POS \#position bp (numeric)
Extra columns are possible (optional).
The first SNP in the Map file corresponds to the first SNP in the genotype file, and so on.
Example:
SNP_ID CHR POS
1201
$\begin{array}{lll}2 & 1 & 8004\end{array}$
$3 \quad 112006$
4116008
The map file is useful to check for Mendelian conflicts and HWE (with also OPTION sex_chr) and for POSTGSF90 (ssGWAS).

With other options, the program can read G or its inverse, \mathbf{A}_{22} or its inverse, etc.

Output files

By default, PREGSf90 runs quality control and creates GimA22i in binary format for use by other application programs, specifying OPTION readGimA22i. With OPTION saveAscii, this file can be stored as ASCII format: $\mathrm{i}, \mathrm{j}, \mathbf{G}^{-1}-\mathbf{A}_{22}^{-1}$.
"freqdata.count" contains allele frequencies in the original genotype file with the format: SNP number (related to the genotype file) and allele frequency as mentioned above.
"freqdata.count.after.clean" contains allele frequencies as used in calculations with the format: SNP number (related to the genotype file), allele frequency, and exclusion code.
Exclusion codes:
1: Call Rate
2: MAF
3: Monomorphic
4: Excluded by request
5: Mendelian error
6: HWE
7: High Correlation with other(s) SNP
"Gen_call_rate" contains a list of animals excluded with call rate below the threshold.
"Gen_conflicts" contains a report of animals with Mendelian conflicts with their parents.
The program can store files such as \mathbf{G} or its inverse, \mathbf{A}_{22} or its inverse, or other reports from QC as specified by their respective OPTIONs.

Options for creating the genomic relationship Matrix (\boldsymbol{G})

The genomic relationship matrix, \mathbf{G}, can be created in different ways.
OPTION whichG x
Specifies how \mathbf{G} is created.
The variable x can be

1: $\mathbf{G}=\frac{\mathbf{Z Z}}{k}$; VanRaden, 2008 (default)
2: $\mathbf{G}=\frac{\mathbf{Z D Z}}{n}$; Amin et al., 2007; Leuttenger et al., 2003; where $\mathbf{D}=\frac{1}{2 p(1-p)}$
3: As 2 with modification UAR from Yang et al., 2010

OPTION whichfreq \mathbf{x}
Specifies which frequency is used to create \mathbf{G}.
The variable x can be
0 : read from file "freqdata" or from the other file using OPTION FreqFile
1: 0.5
2: current calculated from genotypes (default)
OPTION FreqFile <file>
Reads allele frequencies from a file. For example, based on allele frequencies calculated by estfreq.f90 (VanRaden, 2009) with format:
Field 1 - SNP number (sequential marker number)
Field 2 - allele frequency as a real value from 0 to 1
Example:
10.525333
20.293667
30.448333
40.510667
where SNP corresponds to the index of SNP based on the same order as in the genotype file. If whichfreq is set to 0 , the default file name is "freqdata".

OPTION whichScale \mathbf{x}
Specifies how \mathbf{G} is scaled.
The variable \mathbf{x} can be
1: $2 \sum\{p(1-p)\}$; VanRaden, 2008 (default)
2: $\frac{\operatorname{tr}(\mathbf{Z Z})}{n}$; Legarra, 2009, Hayes, 2009
3: correction; Gianola et al., 2009

OPTION weightedG <file>
Reads weights from a file to create weighted genomic relationships.
With weights, $\mathrm{Z}^{*}=\mathrm{Z} \operatorname{sqrt}(\mathrm{D}) \Rightarrow \mathbf{G}=\mathrm{Z}^{*} \mathrm{Z}^{* \prime}=\mathrm{ZDZ}$ '. Format:
Field 1 - weight
Example:
$0.7837836 \mathrm{E}-01$
$0.4900770 \mathrm{E}-01$
0.7538282
1.0

Each weight corresponds to each SNP marker defined in the map file.
Weights can be extracted from the output of POSTGSF90.

OPTION maxsnp x

Sets the maximum length of string to read marker data from a file. It is only necessary if greater than default $(400,000)$.

Quality Control (QC) for \boldsymbol{G}

By default the following QC can be run:
MAF
Call rate (SNPs and animals)
Monomorphic
Parent-progeny conflicts (SNPs and animals)

Parameters can be modified with the following options:
OPTION minfreq x
Ignores all SNP with MAF $<x$ (default value $=0.05$).
OPTION callrate x
Ignores SNP with call rates < x (number of calls / number of individuals with genotypes). The default value is 0.90 .
OPTION callrateAnim x
Ignores genotypes with call rates < x (number of calls / number of SNPs). Default value is 0.90 .
OPTION monomorphic x
Ignores monomorphic SNPs. Optional parameter \mathbf{x} can be used to enable (1) or disable (0) the check.
The default value is 1 .

OPTION hwe x

Checks departure of heterozygous from Hardy-Weinberg equilibrium. By default, this QC is not run. The optional parameter x can be the maximum difference between observed and expected frequency (default value $=0.15$) as used in Wiggans et al. (2009) in JDS.
OPTION high_correlation $x y$
Checks for highly correlated SNP. By default, this QC is not run. The optional parameter x can be the maximum difference in allele frequency to check a pair of locus. If no value is set, 0.025 is used.
Decrease this value to speed up the calculation. A pair of loci is considered highly correlated if all genotypes are the same (0-0, 1-1, 2-2) or the opposite (0-2, 1-1, 2-0) (Wiggans et al., 2009. JDS). The optional parameter y can be used to set a threshold to check the number of identical samples out of the number of genotypes (default values: $x=0.025, y=0.995$).
OPTION verify_parentage x
Verifies parent-progeny Mendelian conflicts and writes a report into the "Gen_conflicts" file. The optional parameter x can be
0: no action
1: only detects
2: detects and searches for an alternate parent; no change to any file. This option is implemented in the

SeekParentF90 program.
3: detects and eliminates progenies with conflicts (default).
OPTION exclusion_threshold \mathbf{x}
Sets the number of parent-progeny exclusions as percentage. All SNP are used to determine wrong relationships (default value $=2$).
OPTION exclusion_threshold_snp x
Sets the number of parent-progeny exclusions for each locus as percentage. A pair of genotyped animals is evaluated to exclude SNP from the analysis (default value = 10).
OPTION number_parent_progeny_evaluations x
Sets the number of minimum pair of parent-progeny evaluations to exclude SNP due to parent-progeny exclusion (default value $=100$).
OPTION outparent_progeny x
Creates a full log file "Gen_conflicts_all" with all pairs of parent-progeny tested for Mendelian conflicts. OPTION excludeCHR n1 n2 n3 ...
Excludes all SNP from chromosomes n1, n2, n3, ... A map file must be provided (see OPTION map_file).
OPTION sex_chr n
Chromosomes with a number greater or equal to n are not considered as autosomes. If this option is used, sex chromosomes will not be used for checking parent-progeny, Mendelian conflicts, and HWE. A map file must be provided (see OPTION map_file).
OPTION threshold_duplicate_samples x
Sets the threshold to issue warning for possible duplicate samples if $G(i, j) / \operatorname{sqrt}(G(i, i) * G(j, j))>x(\operatorname{default}$ value $=0.9$).
OPTION threshold_diagonal_g x
Checks for extremely large diagonals in the genomic relationship matrix. If optional x is present, the threshold will be set (default value = 1.6).
OPTION plotpca
Plots the first two principal components to look for stratification in the population.
OPTION extra_info_pca <file>col
Reads the column col to plot with different colors for different classes from the file. The file should contain at least one variable with different classes for each genotyped individual, and the order should match the order of the genotype file. Variables could be alphanumeric and separated by one or more spaces.
OPTION calculate_LD
Calculates LD as the squared correlation of allele counts for two SNP.
Results are stored in "ld_results", columns: snp_i, chr_i, pos_i, freq_i, snp_j, chr_j, pos_j,freq_j, dist_ij, Rsq_ij
OPTION LD_by_chr
Calculates LD within chromosome.
OPTION LD_by_pos x
Calculates LD within chromosome and windows of SNP based on position. Optional parameter x defines with windows size in Bp , default value 200000
OPTION filter_by_LD x

Filters SNP with Rsq > threshold. Optional parameter x define the threshold. default value 0.8
OPTION thr_output_LD x
Threshold to print out Rsq between pair of SNP Optional parameter x define the threshold. default value 0.1

OPTION saveCleanSNPs *
Saves clean genotype data with excluded SNP and animals based on the OPTIONS specified.
*_clean files are created:

- gt_clean
- gt_clean_XrefiD
*_removed files are created:
- gt_SNPs_removed
- gt_Animals_removed
where "gt" is the genotype file.

OPTION no_quality_control
Turns off all quality control. It speeds up computations when the QC was previously performed.
OPTION outcallrate
Prints all call rate information for SNP and individuals. The files "callrate" for SNP and "callrate_a" for individuals are created.

Quality Control for Off-diagonal of \boldsymbol{A}_{22} and \boldsymbol{G}
 OPTION thrWarnCorAG x

Sets the threshold to issue warning if correlation between \mathbf{A}_{22} and $\mathbf{G}<x$ (default value $=0.5$).

OPTION thrStopCorAG x

Sets the threshold to stop the analysis if correlation between \mathbf{A}_{22} and $\mathbf{G}<x$ (default value $=0.3$).

OPTION thrCorAG x

Sets the threshold to calculate correlation between \mathbf{A}_{22} and \mathbf{G} for only $\mathbf{A}_{22} \geq x$ (default value $=0.02$).

Options for \boldsymbol{H}

The options includes different weights to create $\mathbf{G}^{-1}-\mathbf{A}_{22}^{-1}$ as

$$
\tau\left(\alpha \mathbf{G}+\beta \mathbf{A}_{\mathbf{2 2}}+\gamma \mathbf{I}+\delta \mathbf{1} \mathbf{1}^{\prime}\right)^{-1}-\omega \mathbf{A}_{22}^{-1}
$$

where the parameters are to scale the genomic information to be compatible with the pedigree information, to make matrices invertible in the presence of clones, and to control bias. The default
values are: tau $(\tau)=1$, alpha $(\alpha)=0.95$, beta $(\beta)=0.05$, gamma $(\gamma)=0$, delta $(\delta)=0$, and omega $(\omega)=1$.
Options to change these defaults are specified with:
OPTION TauOmega tau omega
OPTION AlphaBeta alpha beta
OPTION GammaDelta gamma delta
Hint: OPTION TauOmega was needed when inbreeding was not considered for \mathbf{A}^{-1}. Because inbreeding is now considered for \mathbf{A}^{-1}, we recommend not using this option anymore.

OPTION tunedG x

Scales \mathbf{G} based on \mathbf{A}_{22}. The variable x can be:
0 : no scaling
1: $\operatorname{mean}(\operatorname{diag}(\mathbf{G}))=1$ and mean(offdiag(G))=0
2: $\operatorname{mean}(\operatorname{diag}(\mathbf{G}))=\operatorname{mean}\left(\operatorname{diag}\left(\mathbf{A}_{22}\right)\right)$ and mean(offdiag(G))=mean(offdiag($\left.\left.\mathbf{A}_{22}\right)\right)$ (default)
3: mean(G)=mean(\mathbf{A}_{22})
4: rescale G using the first adjustment as in Powell et al. (2010) or Vitezica et al. (2011).

General control of PREGSF90
OPTION num_threads_pregs n
Specifies number of threads to be used with MKL-OpenMP for creation and inversion of matrices.
OPTION num_theads_iod n
Specifies number of threads to be used with MKL-OpenMP in BLUP90IOD for matrix-vector
multiplications in the PCG algorithm.
OPTION graphics s
Allows to generate plots with GNUPLOT. If optional parameter s is present, set the time in seconds to show the plot. Avoid using in batch programs!!!
OPTION msg x
Sets the level of verbose; 0 minimal; 1 prints lots of diagnostics on the screen.

Save and Read options:
OPTION saveAscii
Saves intermediate matrices (GimA22i, G, Gi, etc.) into files as ASCII (default = binary).
OPTION saveHinv
Saves \mathbf{H}^{-1} in "Hinv.txt" (format: \mathbf{i}, j, val; where i, j, are the index level for the additive genetic effect).
OPTION saveAinv
Saves \mathbf{A}^{-1} in "Ainv.txt" (format: i, j, val; where i, j, are the index level for the additive genetic effect).

The following options use the information of the original ID (alphanumeric) stored in the 10th column of the "renaddxx.ped" file created by RENUMF90.
OPTION saveHinvOrig
Saves \mathbf{H}^{-1} with original IDs
OPTION saveAinvOrig
Saves A $^{-1}$ with original IDs
OPTION saveDiagGOrig
Saves diagonal of G in "DiagGOrig.txt" (format: id, val; where id is the original ID).
OPTION saveGOrig
Saves G in "G_Orig.txt" (format: id_i, id_j, val; where id_i and id_j are the original IDs).
OPTION saveA22Orig
Saves \mathbf{A}_{22} in "A22_Orig.txt" (format: id_i, id_j, val; where id_i and id_j are the original IDs).
OPTION readOrigld

Reads information from "renaddxx.ped" file, original ID, and possibly year of birth for its use in parentprogeny conflict. Only needed if none of the previous "save*Orig" is present.
OPTION saveGimA22iRen
Saves GimA22i matrix in GimA22i_Ren.txt (format: id_i, id_j, val; where id_i and id_j are the IDs as read from the data/pedigree file).
OPTION savePLINK
Saves genotypes in PLINK format files: toPLINK.ped and toPLINK.map.
OPTION no_full_binary
Saves the elements of half-matrix instead of the full matrix. It is useful to keep the compatibility with the older versions of preGSf90. The newer versions save the matrix in a more efficient way, where reading the information from the binary file is not trivial (i.e., not as $i, j, v a l$ anymore).

The following options are used to save and read intermediate files:
OPTION readGimA22i <file>
Reads $\mathbf{G}^{-1}-\mathbf{A}_{22}^{-1}$ from a file. This option can be used in the application programs (BLUPF90, REMLF90, etc.) to use the information already stored in the GimA22i file (default filename). In general, methods used to create and invert matrices in such programs do not use an optimized version. For a large number of genotyped animals, run first PREGSf90 and read stored matrices in the application programs. The optional file can be used to specify a different file name (other than GimA22i) or a path.
For example,
OPTION readGimA22i ../../pregsrun/GimA22i
Other intermediate matrices files can be stored for inspection or for use in BLUPF90 programs as user_file type of random effect. See tricks and REMLF90 for details.

Individual output options:
OPTION saveA22
Saves \mathbf{A}_{22} in "A22".
OPTION saveA22Inverse
Saves \mathbf{A}_{22}^{-1} in "A22i".
OPTION saveG all
If optional all is present, all intermediate matrices for \mathbf{G} will be saved in separate files. If omitting all, only the final \mathbf{G} will be saved in " G ".
OPTION saveGInverse
Saves G ${ }^{-1}$ in " Gi^{\prime}.
OPTION saveGmA22
Saves $\mathbf{G}-\mathbf{A}_{22}$ in "GmA22". This option is obsolete.
OPTION readG <file>
Reads G from "G" by default, or from a user-supplied file.
OPTION readGInverse <file>
Reads \mathbf{G}^{-1} from " $\mathrm{Gi}^{\prime \prime}$ by default, or from a user-supplied file. See the caution below.
OPTION readA22 <file>
Reads \mathbf{A}_{22} from "A22" by default, or from a user-supplied file.

OPTION readA22Inverse <file>

Reads \mathbf{A}_{22}^{-1} from "A22i" by default, or from a user-supplied file. See the caution below.
OPTION readGmA22 <file>
Reads $\mathbf{G}-\mathbf{A}_{22}$ from "GmA22" by default, or from user-supplied file. This option is obsolete.

Caution:

With the options readGInverse and readA22Inverse, the program applies τ to the loaded \mathbf{G}^{-1} and ω to the loaded \mathbf{A}_{22}^{-1} regardless of whether the matrices have been already scaled with τ or ω. In other words, the loaded matrix could be scaled twice if the user used τ or ω both in saving and reading the matrix. Be careful to use the scaling factors combined with the input/output options.
Hint: OPTION TauOmega was needed when inbreeding was not considered for \mathbf{A}^{-1}. Because inbreeding is now considered for \mathbf{A}^{-1}, we recommend not using this option anymore.

POSTGSF90

Basic options

The program calculates SNP effects using the ssGBLUP framework (Wang et al., 2012). The program needs OPTION map_file to assign SNP to their location for Manhattan plots, so chromosomes are visualized in different colors. The following options for POSTGSF90 (ssGWAS) are available:

OPTION Manhattan_plot
Plots the Manhattan plot (SNP effects) for each trait and correlated effects using GNUPLOT.
OPTION Manhattan_plot_R
Plots the Manhattan plot (SNP effects) for each trait and correlated effects using R. TIF images are created: manplot_Sft1e2.tif (note: t1e2 corresponds to trait 1, effect 2).
OPTION Manhattan_plot_R_format format
Controls the format type to create images in R. The format values accepted are: pdf (default), png, or tif. OPTION plotsnp n
Controls the values of SNP effects to use in Manhattan plots
1: plots regular SNP effects: abs(val)
2: plots standardized SNP effects: abs(val/sd) (default)
OPTION SNP_moving_average n
Solutions for SNP effects will be by moving average of n adjacent SNPs.
OPTION windows_variance \mathbf{n}
Calculates the variance explained by n adjacent SNPs.
Hint: When this option is used, the sum of variance explained by n adjacent SNPs (column 8 of snp_sol or column 3 of chrsnpvar) is not 100%. This is because moving variance is used. If windows size is 20 , the proportion of variance assigned to SNP 1 is calculated from SNP 1 to 20, for SNP 2 it goes from 2 to 21, for SNP 3 it goes from 3 to 22 , and so forth. A file called windows_variance has variance that sums to 100\% in column 9.
OPTION windows_variance_mbp n
Calculates the variance explained by n Mb window of adjacent SNPs.

OPTION windows_variance_type n
Sets windows type for variances calculations
1: moving windows
2: exclusive windows
OPTION which_weight x
Generates a weight variable to construct a weighted genomic relationship matrix $\mathbf{G}=\mathbf{Z D Z}{ }^{\prime}$
1: $w=y^{\wedge} 2$ * $(2(p(1-p)))$
2: $w=y^{\wedge} 2$
3: experimental with the degree of brief
4: w = C** $\left.\operatorname{abs}\left(y_{i}\right) / \operatorname{sqrt}(\operatorname{var}(\mathbf{y}))-2\right)$ from VanRaden et al. (2009)
nonlinearA: same as 4
where y is the SNP solution, with scaled weight = $w^{*} n S n p / s u m(w)$; and C is 1.125 by default (enable to change it using the second argument of the option line (OPTION which_weight nonlinearA value), e.g., OPTION which_weight nonlinearA 1.2
OPTION solutions_postGS x
Sets the file name for the solutions file (default = solutions).
OPTION postgs_trt_eff x1 x2
Computes postGS solutions (SNP solutions, variance explained, etc.) for only trait: x1 and effect: x2 OPTION snp_p_value
Computes p-values for GWAS from elements of the inverse of the Mixed Model Equations previously obtained from blupf90. This requires quite a lot of memory and time. See Aguilar et al. (2019) for more details.
OPTION snp_var
Creates a file with prediction error covariance (PEC) for SNP to be used in PREDF90 to compute reliability for indirect predictions. This option works when OPTION snp_p_value is used in BLUPF90+.

Output files for POSTGSF90:

"snp_sol" contains solutions of SNP and weights
1: trait
2: effect
3: SNP
4: Chromosome
5: Position
6: SNP solution
7: weight (can be used as the weight to calculate the weighted G matrix)
8: variance explained by n adjacent SNP (if OPTION windows_variance is used)
9: variance of the SNP solution (used to compute the p-value if OPTION snp_p_value is used)
"chrsnp" contains data to create the plot by GNUPLOT
1: trait
2: effect

3: values of SNP effects to use in Manhattan plots, i.e., (abs(SNP_i)/var(SNP))
4: SNP
5: Chromosome
6: Position
"chrsnpvar" contains data to create plot by GNUPLOT
1: trait
2: effect
3: variance explained by n adjacent SNP
4: SNP
5: Chromosome
6: Position
"windows_segment" contains information of windows segments used to get variance explained
1: label
2: window size (number of SNP)
3: Start SNP number for the window
4: End SNP number for the window
5: identification of window: (ChrNumber)'_'(startPositionMBP)
6: Start (ChrNumber)'_'(Position) for the window
7: End (ChrNumber)'_'(Position) for the window
"windows_variance" contains variance explained for the biggest non-overlapping windows segments
1: trait
2: effect
3: Start SNP number or SNP name for the window
4: End SNP number or SNP name for the window
5: window size (number of SNP)
6: Start (ChrNumber)'_'(Position) for the window
7: End (ChrNumber)'_'(Position) for the window
8: identification of window: (ChrNumber)'_'(startPositionMBP)
9: variance explained by n adjacents SNP
"snp_pred" contains allele frequencies + SNP effects

Graphic control files:
Several files are created to generate graphics using either GNUPLOT or R.

File names rules
"Sft1e2.R". The first letter indicates " S " for solutions of $S N P$, " V " for variance explained, and " P " for p values.
"t1e2" indicates that the file is for the trait 1 and the effect 2.

Filename extension

$$
\begin{aligned}
& \text { xxx.gnuplot => GNUPLOT } \\
& \text { xxx.R => R programs } \\
& \text { xxx.pdf => image } \\
& \text { xxx.png => image } \\
& \text { xxx.tif => image }
\end{aligned}
$$

PREDF90

Predicts direct genomic value (DGV) for young animals based on only genotypes i.e. $\widehat{\mathbf{u}}=\mathbf{Z a}$, where $\widehat{\mathbf{u}}$ is DGV and $\hat{\mathbf{a}}$ is the SNP effects. The prediction is based on SNP effects obtained from POSTGSF90. For young animals that were not included in the previous analysis, DGV can be calculated using the "snp_pred" file from POSTGSF90. PREDF90 requires some output files from POSTGSF90 and a genotype file for the animals to be predicted. It does not accept a parameter file but takes command-line options.

PREDF90 does not accept a parameter file but takes command-line options.

--snpfile name

Provides the SNP file for animals to be indirectly predicted. PREDF90 will ask for the SNP file name if this command is not present. The SNP file has the same format as for PREGSF90.
--acc
Computes reliability for indirect predictions. It requires OPTION snp_p_value in BLUPF90+ and OPTION snp_var in POSTGSf90. It reads "snp_var" created by POSTGSF90.
--acc_type
Select 1.0 for dairy cattle (Reliability) or 0.5 for beef cattle (BIF accuracy) (default 1.0).
--use_diagG_acc
Uses inbreeding (F) from \mathbf{G} in the denominator of the reliability formula: reliability = 1-PEV/($\left.\sigma_{u}^{2}(1+\mathrm{F})\right)$. --use_mu_hat
Adds the base ($\hat{\mu}$) for DGV so the values are comparable to GEBV. See Legarra et al. (2021) and Lourenco et al. (2018) for more details.
--use_var_mu_hat
Considers the variance of $\hat{\mu}$ when calculating the reliability of DGV and is automatically turned on if --use_mu_hat and --acc are present.
--help
Shows the main options.

Usage:
predf90 --snpfile new_genotypes.txt --use_mu_hat --acc --use_diagG_acc
With these commands, predf90 will compute indirect predictions for the animals in new_genotypes.txt, including $\hat{\mu}$ (i.e., $\mathbf{D G V}=\hat{\mu}+\mathbf{Z a}$), computing reliabilities adjusted for inbreeding in \mathbf{G}.

Input files:

This program automatically detects and read the following file.
"snp_pred"

- information about the random effect (number of traits + correlated effects)
- gene frequencies
- solutions of SNP effects

SNP_file_for_animals_to_predict

SNP file for animals to have DGV predicted. This file has the same format as used in PREGSF90 and POSTGSF90.

Output file:

"SNP_predictions"

- ID, call rate, DGV, reliability (if --acc is present)

Constant parameters that cannot be changed by the users:

1. alpha - fraction of G used (default=0.95); affects scale of prediction
2. callrate - to be used later for discarding genotypes with poor quality (default=0.7)

PREDICTF90

This is program is used to do cross-validations. It reads a blupf90 parameter file, a solutions file and a data file. It needs OPTION include_effects followed by a series of effects. It computes:
y_star = y corrected by the other (not included) effects
y_{-}hat $=$sum of estimates of the included effects
residual $=y$ - included effects (not a true residual)
Example: $\mathrm{y}=$ herd + age + animal +e
If the parameter file has OPTION include_effects 3.
$y_{-} \operatorname{star}=\mathrm{y}$ - herd_hat - age_hat (y - effects to be adjusted for)
y_hat = animal_hat (effect to keep)
Which makes cor(y_hat,y_star) = cor(ebv, adjusted y), in this example, which is a measure of accuracy.

It outputs the correlation between y_hat and y_star, for instance cor(ystar,yhat)=cor(u+e, uhat) and outputs these columns into a file, together with animal id (if there is animal in the model) or record number (if not).

In addition, if animal effect is in the model, it produces a file with ebvs from the solutions file.

Output file:
"yhat_residual"
The main file is yhat_residual, which has corrected phenotypes and predicted residuals. The number of columns in this file depend on the number of traits (N).

Column 1: Animal ID (renumbered i.e., same as the 1st column in renaddxx.ped)
Column 2 to $\mathrm{N}+1$: " y _star" explained above
Column $\mathrm{N}+2$ to $2 \mathrm{~N}+1$: " y _hat" explained above
Column $2 \mathrm{~N}+2$ to $3 \mathrm{~N}+1$: "residual" explained above

Demonstration for genomic analysis
Data were simulated by D. Lourenco and the files are available here:
https://github.com/danielall/Data_ssGBLUP
Preparation with RENUMF90
"renum.par" for RENUMF90
\# Parameter file for renumf90
\# Data file = phenotypes.txt
\# 142304
\# animal, sex, phenotype, TBV, generation
\# Pedigree file = pedigree.txt
\# 123
\# animal sire dam
\# SNP file = genotypes.txt
\# SNP map file = gen_map.txt
DATAFILE
phenotypes.txt
TRAITS
3
FIELDS_PASSED TO OUTPUT

WEIGHT(S)
RESIDUAL_VARIANCE
0.60

EFFECT
2 cross alpha \#sex
EFFECT
1 cross alpha \#animal
RANDOM
animal
FILE
pedigree.txt
SNP_FILE
genotypes.txt
(CO)VARIANCES

0.40

OPTION map_file gen_map.txt

```
Run RENUMF90
RENUMF90 version 1.157 with zlib
    renum.par
... ... ...
    Inbreeding statistics:
    the maximum inbreeding coefficient =0.3125
    average inbreeding for inbred animals = 0.0621 n = 1292
    for all animals = 0.0067 n = 12010
    Number of animals with records = 10000
    Number of animals with genotypes = 2024
    Number of animals with records or genotypes = 10000
    Number of animals with genotypes and no records = 0
    Number of parents without records or genotypes = 2010
    Total number of animals = 12010
    Wrote cross reference IDs for SNP file "genotypes.txt_XrefID"
    Wrote parameter file "renf90.par"
    Wrote renumbered data "renf90.dat" 10000 records
    Wrote field information "renf90.fields" for 3 fields in data
"renf90.par" from RENUMF90
# BLUPF90 parameter file created by RENUMF90
DATAFILE
renf90.dat
NUMBER_OF_TRAITS
    1
NUMBER_OF_EFFECTS
    2
OBSERVATION(S)
    1
WEIGHT(S)
```

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
22 cross
312010 cross
RANDOM_RESIDUAL VALUES
0.60000
RANDOM_GROUP
2
RANDOM_TYPE
add_an_upginb
FILE
renadd02.ped
(CO)VARIANCES
0.40000
OPTION SNP_file genotypes.txt
OPTION map_file gen_map.txt

Analysis with BLUPF90

```
Run BLUPF90
    BLUPF90 ver. 1.71
Parameter file: renf90.par
Data file: renf90.dat
Number of Traits 1
Number of Effects 2
Position of Observations 1
Position of Weights 0
Value of Missing Trait/Observation 0
name of parameter file?renf90.par
... ... ... 
* Genomic Library: Version 1.308 *
* *
* Optimized OpenMP Version - 4 threads *
* *
* Modified relationship matrix (H) created for effect: 2 *
```

Read 12010 animals from pedigree file: "renadd02.ped"
Number of Genotyped Animals: 2024
...
round $=55$ convergence $=0.1126 \mathrm{E}-11$
round $=56$ convergence $=0.5045 \mathrm{E}-12$
56 iterations, convergence criterion= 0.5045E-12
solutions stored in file: "solutions"

Analysis with POSTGSF90

Run POSTGSF90

```
name of parameter file?renf90.par
    postGSf90 ver. 1.77
.. ... ...
Solutions read from file: "solutions"
Solutions for SNPs in file: "snp_sol"
Files for pedictions by SNP effects in file: "snp_pred"
```

Indirect Predictions with PREDF90

Run PREDF90

```
predf90 1.13
Predicts EBVs from genotypes based on results from single-step evaluation
Number of SNP: 4500
Number of traits: 1
number of correlated traits: 1
MU_hat to adjust Za
        Trait: 1
        Correlated effect: 1
        mu_hat: 0.1443
... ... ...
        3000 SNP
The genotype file contains 45000 SNP starting from position 14
```

Firts 10	genotypes: Id, EBV
UGA42014	0.4649608
UGA42019	0.6343889
UGA42029	-0.1096066
UGA42039	0.9360114
UGA42047	0.6454658
UGA42051	0.5041275
UGA42052	$1.7737031 \mathrm{E}-02$
UGA42056	0.9935431
UGA42057	0.2609830
Processed	2024 genotypes
Average calling rate: 1.00	
\$head -5	
UGA42014	1.00
UGA42019 predictions	1.00

Computing adjusted phenotypes with PREDICTF90
 Run PREDICTF90

This program is used to calculate adjusted $\mathrm{y}, \hat{\mathrm{y}}$, and residuals using the same parameter file and "solutions" as BLUPF90
Output files:
"yhat_residual"
Format: record \#, adjusted y, y, residual
"bvs.dat"
The same format as "solutions" including (G)EBV.

```
# BLUPF90 parameter file created by RENF90 and extended to work with PREDICTF90
DATAFILE
renf90.dat
NUMBER_OF_TRAITS
    1
NUMBER_OF_EFFECTS
    2
OBSERVATION(S)
    1
WEIGHT(S)
```

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
22 cross
312010 cross
RANDOM_RESIDUAL VALUES
0.60000
RANDOM_GROUP
2
RANDOM_TYPE

```
add_an_upginb
FILE
renadd02.ped
(CO)VARIANCES
0.40000
OPTION SNP_file genotypes.txt
OPTION map_file gen_map.txt
OPTION include_effects 2 #phenotypes will be adjusted for all effects but effect number 2 (animal)
```


Run PREDICTF90

```
name of parameter file?
pred.par
*** include effects to predict Yhat n, effects 1 2
```

 PREDICTF90 ver. 1.6
 Animal Effect: $\quad 2$
$y(s)$, yhat(s), residual(s) in written in "yhat_residual" file
10000 records read
Trait: 110000
mean $Y \quad 8.662515402103672 \mathrm{E}-002$ var $Y \quad 0.934465837702133$
mean Yhat $8.662514367382973 E-002$ var Yhat 0.181142370417667
cov (Y,Yhat) 0.344475853966058 corr (Y,Yhat) 0.837272925060839
wrote bvs for animals in data in file "bvs.dat"

Hints:

1) The effect that goes into OPTION include_effects (e.g., OPTION include_effects 2) is included in the Yhat. In this small example with 1 trait, the format of yhat_residual is: Animal_id, Y, Yhat, residual Where: $\mathrm{Y}=$ Phenotype $-\mu$

Yhat = EBV (or animal effect)
Residual = Phenotype - EBV
2) When 2 traits are used in the model, the format of yhat_residual is:

Animal_id, Y1, Y2, Yhat1, Yhat2, residual1, residual2
3) corr (Y,Yhat) should not be used as a measure of predictivity because it uses adjusted phenotypes and EBVs from the same dataset. Usually, predictivity requires phenotypes adjusted for fixed effects in the complete data (benchmark) and (G)EBVs calculated from the reduced data (without records for validation animals). The regular predictivity measure is: corr[Y_from_PREDICTf90, (G)EBV_reduced]

For this small example with 1 trait, a general Linux bash code is:

```
$awk '{print $1,$2}' ebv_complete/yhat_residual | sort +0 -1 > Y
$awk '{if ($2==2) print $3,$4}' ebv_reduced/solutions | sort +0 -1 > ebv.temp
$awk '{if ($2==2) print $3,$4}' gebv_reduced/solutions | sort +0 -1 > gebv.temp
$join -1 +1 -2 +1 Y validation_animals > filel.temp
$join -1 +1 -2 +1 file1.temp ebv.temp > file2.temp
```

```
$join -1 +1 -2 +1 file2.temp gebv.temp > Y_ebv_gebv
```

\#obs: validation_animals is a file that contains sorted ids for validation animals

An R code to calculate correlations is:

```
pred <- read.table("Y_ebv_gebv",header=F)
ebv_predictivity <- cor(pred[,2],pred[,3]); ebv_predictivity
gebv_predictivity <- cor(pred[,2],pred[,4]); gebv_predictivity
```


Examples of parameter files

Sire model without A matrix
DATAFILE
test.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
3
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
12 cross
23 cross
RANDOM_RESIDUAL VALUES
10
RANDOM_GROUP
2
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
1

Sire model with A matrix
DATAFILE
test.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
3
WEIGHT(S)

```
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
12 cross
2 cross
RANDOM_RESIDUAL VALUES
10
RANDOM_GROUP
2
RANDOM_TYPE
add_sire
FILE
sire.ped
(CO)VARIANCES
1
Two-trait sire model
DATAFILE
test.dat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
3
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
112 cross
2 3 cross
RANDOM_RESIDUAL VALUES
101
15
RANDOM_GROUP
2
RANDOM_TYPE
add_sire
FILE
sire.ped
(CO)VARIANCES
10.1
0.11
Animal model
DATAFILE
test.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
3
```

```
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
12 cross
510 cross
RANDOM_RESIDUAL VALUES
10
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
1
Multiple trait animal model
# Example 1: two-trait animal model
DATAFILE
test.dat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
3
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
112 cross
510 cross
RANDOM_RESIDUAL VALUES
10}
15
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
10.1
0.11
# Example 2: different model for each trait
DATAFILE
test.dat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
```

```
3
OBSERVATION(S)
34
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
122 cross
510 cross
630 cross
RANDOM_RESIDUAL VALUES
101
15
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
10.1
0.11
RANDOM_GROUP
3
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
10
01
Animal model with UPG
DATAFILE
test.dat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
34
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
112 cross
513 cross
RANDOM_RESIDUAL VALUES
101
15
RANDOM_GROUP
2
```

```
RANDOM_TYPE
add_an_upg
FILE
animal.ped
(CO)VARIANCES
10.1
0 . 1 1
Animal model with inbreeding
DATAFILE
test.dat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
34
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
112 cross
5 13 cross
RANDOM_RESIDUAL VALUES
101
15
RANDOM_GROUP
2
RANDOM_TYPE
add_an_upginb
FILE
animal.ped
(CO)VARIANCES
10.1
0 . 1 1
Repeatability model - single trait
DATAFILE
test.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
3
OBSERVATION(S)
3
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
12 cross
5 cross
5 cross
```

```
RANDOM_RESIDUAL VALUES
10
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
1
RANDOM_GROUP
3
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
1
Repeatability model - two traits
DATAFILE
test.dat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
3
OBSERVATION(S)
3
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
112 cross
55 cross
55 cross
RANDOM_RESIDUAL VALUES
101
15
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
10.1
0.11
RANDOM_GROUP
3
RANDOM_TYPE
diagonal
```

FILE
(CO)VARIANCES
10.1
0.11

Maternal effect model
DATAFILE
maternal.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
4
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
3946 cross
122473 cross
222473 cross
222473 cross
RANDOM_RESIDUAL VALUES
1050
RANDOM_GROUP
23
RANDOM_TYPE
add_animal
FILE
maternal.ped
(CO)VARIANCES
450-100
-100 340
RANDOM_GROUP
4
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
370
\# For (THR)GIBBSxF90
\# Example 1 - declaring the random, diagonal effect separately for effects 4 and 5.
DATAFILE
test.dat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
5

```
OBSERVATION(S)
3
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
102 cross
022 cross
5 10 cross
6 30 cross
070 cross
RANDOM_RESIDUAL VALUES
10}
15
RANDOM_GROUP
3
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
10.1
0.11
RANDOM_GROUP
4
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
10
0
RANDOM_GROUP
5
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
O
0
# Example 2- joint declaration for the random, diagonal effects 4 and 5.
DATAFILE
test.dat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
5
OBSERVATION(S)
3
```

```
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
102 cross
022 cross
5 10 cross
630 cross
0730 cross
RANDOM_RESIDUAL VALUES
10}
15
RANDOM_GROUP
3
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
10.1
0.11
RANDOM_GROUP
4
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
1000
0000
0000
0001
# Dominance model
DATAFILE
dom.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
3
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
11 cross
4 cov
230001 cross
5}10412\mathrm{ cross
RANDOM_RESIDUAL VALUES
100
```

```
RANDOM_GROUP
3
RANDOM_TYPE
add_an_upginb
FILE
add.ped
(CO)VARIANCES
10
RANDOM_GROUP
4
RANDOM_TYPE
par_dom
FILE
dom.ped
(CO)VARIANCES
2
Random regression model
# Single trait
DATAFILE
data_score
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
10
OBSERVATION(S)
9
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 788 cross
2 32 cross
5 1 cov
6 1 cov
3 15097 cross
515097 cov 3
6 15097 cov 3
3}81883\mathrm{ cross
581883 cov 3
61883 cov 3
RANDOM_RESIDUAL VALUES
100
RANDOM_GROUP
56
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
100 1 1
```

```
1 101
1 1 10
RANDOM_GROUP
8910
RANDOM_TYPE
add_an_upg
FILE
ped_score
(CO)VARIANCES
100 1 1
1 10 1
1 1 10
# Two traits
DATAFILE
test.dat1
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
9
OBSERVATION(S)
3
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
112 cross
6 1 cov
71 cov
25
65 cov 22
775 cov 22
2210 cross
6610 cov 22
710 cov 22
RANDOM_RESIDUAL VALUES
101
15
RANDOM_GROUP
45
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
10.10.10.10.10.1
0.110.10.10.10.1
0.10.110.10.10.1
0.10.10.110.10.1
0.10.10.10.110.1
0.10.10.10.10.11
```

```
RANDOM_GROUP
79
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
10.10.10.10.10.1
0.110.10.10.10.1
0.10.110.10.10.1
0.10.10.110.10.1
0.10.10.10.110.1
0.10.10.10.10.11
# Example 3
DATAFILE
test.dat2
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
10
OBSERVATION(S)
3
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
112 cross
6 1 cov
71 cov
81 cov
65 cov 22
775 cov 22
885 cov 22
6610 cov 22
710 cov 22
8810 cov 22
RANDOM_RESIDUAL VALUES
101
15
RANDOM_GROUP
5 }
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
10.10.10.10.10.1
0.110.10.10.10.1
0.10.110.10.10.1
0.10.10.110.10.1
```

```
0.10.10.10.110.1
0.10.10.10.10.11
RANDOM_GROUP
890
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
10.10.10.10.10.1
0.110.10.10.10.1
0.10.110.10.10.1
0.10.10.110.10.1
0.10.10.10.110.1
0.10.10.10.10.11
Random regression model with heterogeneous residual variances
### using airemlf90
# Example 1: with intercept
DATAFILE
test.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
9
OBSERVATION(S)
3
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
12 cross
6 cov
7 cov
5 cross
6 cov 5
75 cov 5
510 cross
610 cov 5
70 cov 5
RANDOM_RESIDUAL VALUES
10
RANDOM_GROUP
45
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
10.10.1
```

```
0.110.1
0 . 1 0 . 1 1
RANDOM_GROUP
79
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
10.10.1
0.110.1
0.10.11
OPTION hetres_pos }6
OPTION hetres_pol 4.0 1.0 0.1
# Example 2: with no intercept
DATAFILE
test.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
7
OBSERVATION(S)
3
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
12 cross
6 cov
7 cov
6 cov 5
7 cov 5
610 cov 5
70 cov 5
RANDOM_RESIDUAL VALUES
10
RANDOM_GROUP
45
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
10.1
0.11
RANDOM_GROUP
6
RANDOM_TYPE
add_animal
FILE
```

```
animal.ped
(CO)VARIANCES
10.1
0 . 1 1
OPTION hetres_pos }6
OPTION hetres_pol 1.0 0.1
### using GIBBS3F90
DATAFILE
test.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
9
OBSERVATION(S)
3
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
12 cross
6 cov
7 cov
5 cross
6 cov 5
7 cov 5
510 cross
610 cov 5
70 cov 5
RANDOM_RESIDUAL VALUES
10
RANDOM_GROUP
45
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
10.10.1
0.110.1
0 . 1 0 . 1 1
RANDOM_GROUP
79
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
10.10.1
0.110.1
0.10.11
```

```
OPTION hetres_int 85
Competitive model (i.e., social interaction effects)
DATAFILE
competition.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
19
OBSERVATION(S)
24
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
28 cross
362 cross
21 2409 cross
4004 cross
220 cov 5
220 cov 6
220 cov 7
220 cov }
220 cov 9
220 cov 10
220 cov 11
220 cov 12
220}\operatorname{cov}1
220 cov 14
220 cov 15
220 cov 16
220 cov 17
220 cov 18
228004 cov 19
RANDOM_RESIDUAL VALUES
1225.8
RANDOM_GROUP
4
RANDOM_TYPE
add_animal
FILE
renadd04.ped
(CO)VARIANCES
267.0325.313
25.313104.44
RANDOM_GROUP
2
RANDOM_TYPE
diagonal
FILE
```

(CO)VARIANCES
89.187

RANDOM_GROUP
3
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
167.34

Appendix A (single trait animal model)

Single trait "USDA-type" animal model. The files used in this example are available here.

$$
y_{i j k l}=h y s_{i}+h s_{i j}+p_{k}+a_{k}+e_{i j k l}
$$

where
y_{ijkl} - production yield
hys s_{i} - fixed herd year season
$\mathrm{hs}_{\mathrm{ij}}$ - random herd x sire interaction
p_{k} - random permanent environment
a_{k} - random animal
and

$$
\operatorname{var}\left(\mathrm{hs}_{\mathrm{ij}}\right)=.05, \operatorname{var}\left(\mathrm{p}_{\mathrm{k}}\right)=.1, \operatorname{var}\left(\mathrm{a}_{\mathrm{k}}\right)=.5, \operatorname{var}\left(\mathrm{e}_{\mathrm{ijk}}\right)=1
$$

Data file (ic)

Format: animal/hys/p/hs/y
111110
$\begin{array}{lllll}2 & 1 & 2 & 1 & 11\end{array}$
323215
424313
$\begin{array}{lllll}5 & 3 & 5 & 4 & 14\end{array}$
636312
Pedigree file (is)
Format: animal/dam/sire/code

1	12	8	2
2	1	8	1
3	2	9	1
4	7	10	1
5	12	11	2
6	1	10	1
7	13	14	3
8	5	11	1
9	13	8	2
10	7	14	2
11	13	14	3

Parameter file

\# Example of single-trait animal model with one fixed effect DATAFILE
ic
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
observation(s)
5
WEIGHT(S)

```
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
2 cross
3 cross
4 cross
114 cross
RANDOM_RESIDUAL VALUES
1
RANDOM_GROUP
2
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
. }
RANDOM_GROUP
3
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
. }0
RANDOM_GROUP
4
RANDOM_TYPE
add_an_upg
FILE
is
(CO)VARIANCES
. }
```

Execution
name of parameter file?exiap
BLUPF90 1.00
$\begin{array}{lcll}\text { Parameter file: } & \text { exiap } & & \\ \text { Data file: } & \text { ic } & & \\ \text { Number of Traits } & 1 & & \\ \text { Number of Effects } & 4 & & \\ \text { Position of Observations } & 5 & & \\ \text { Position of Weight (1) } & 0 & & \\ \text { Value of Missing Trait/Observation } & & \\ \text { EFFECTS } & & & \\ \text { \# type } & \text { position (2) } & & \\ 1 \text { cross-classified } & 2 & 6 & \\ 2 \text { cross-classified } & 3 & 4 & \\ 3 \text { cross-classified } & 4 & 14 & \end{array}$

```
Residual (co)variance Matrix
    1.000
Random Effect 2
Type of Random Effect: diagonal
trait effect (CO)VARIANCES
    1 2 0.100
Random Effect 3 ( 
trait effect (CO)VARIANCES
    1 3 0.050
Random Effect 4
Type of Random Effect: additive animal
Pedigree File: is
trait effect (CO)VARIANCES
    1 4 0.500
REMARKS
    (1) Weight position 0 means no weights utilized
    (2) Effect positions of 0 for some effects and traits means that such
        effects are missing for specified traits
Data record length = 5
original G
        0.10
inverted G
    10.00
original G
    0.05
inverted G
    20.00
original G
    0.50
inverted G
    2.00
solutions stored in file: "solutions"
trait/effect level solution
\begin{tabular}{llll}
1 & 1 & 1 & 11.8589
\end{tabular}
\begin{tabular}{llll}
1 & 1 & 2 & 13.7539
\end{tabular}
\begin{tabular}{llll}
1 & 1 & 3 & 14.7086
\end{tabular}
\begin{tabular}{lll}
1 & 1 & -0.0088
\end{tabular}
\(2 \quad 2 \quad 0.0088\)
\begin{tabular}{lll}
1 & 3 & -0.0159
\end{tabular}
\begin{tabular}{lll}
1 & 2 & 0.0159
\end{tabular}
\(2 \quad 5 \quad 0.0321\)
\(126-0.0321\)
        0.0000
        -0.0079
        -0.0081
        0.0161
        -1.7627
        -0.9553
        1.4288
        -0.9206
        -1.0781
        -2.3474
        0.8511
        -0.1521
        3.8926
        -2.7717
```

1	4	11	0.8528
1	4	12	-3.1911
1	4	13	7.9976
1	4	14	-6.3340

Appendix B (multiple trait sire model)

Example of multiple trait sire model (from L.R. Schaeffer notes of 1985).

Models

Trait 1: $\mathrm{y}_{1 \mathrm{i}}=\mathrm{h}_{\mathrm{i}}+\mathrm{s}_{1 \mathrm{j}}+\mathrm{e}_{1 \mathrm{ijk}}$
Trait 2: $\mathrm{y}_{2 \mathrm{i}}=\mu+\mathrm{s}_{2 \mathrm{j}}+\mathrm{e}_{2 \mathrm{jk}}$
where
h - fixed herd
s - random sire
and

$$
\operatorname{var}(\mathrm{s})=\mathrm{A}[86 ; 6 \text { 17], } \operatorname{var}(\mathrm{e})=\mathrm{I}[1010 ; 1020]
$$

Data file (Irsdat)

Format: $h / \mu / s / y_{1} / y_{2}$
1013.40
2021.30
$\begin{array}{lllll}1 & 1 & 3 & .8 & 50.3\end{array}$
2144.552 .6
015055.0

Pedigree file (Irsrel)
Format: bull/sire/MGS
130
205
300
400
500

Parameter file (Irsex)
\# Example of two trait sire model with unequal models
DATAFILE
Irsdat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
45
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
122 cross
335 cross

```
RANDOM_RESIDUAL VALUES
1010
1020
RANDOM_GROUP
2
RANDOM_TYPE
add_sire
FILE
Irsrel
(CO)VARIANCES
8
617
Execution
name of parameter file?lrsex
BLUPF90 1.00
```



```
Residual (co)variance Matrix
\(10.000 \quad 10.000\)
        10.000 20.000
\begin{tabular}{lll} 
Random Effect & 1 \\
Type of Random Effect: & & \\
additive sire \\
Pedigree File: \\
trait effect & & (CO) VARIANCES \\
1 & 2 & 8.000
\end{tabular}
\begin{tabular}{llll} 
& & 6.000 \\
2 & 2 & 6.000 & 17.000
\end{tabular}
REMARKS
    (1) Weight position 0 means no weights utilized
    (2) Effect positions of 0 for some effects and traits means that such
        effects are missing for specified traits
Data record length = 5
original G
            8.00 6.00
            6.00 17.00
inverted G
    0.17 -0.06
    -0.06 0.08
solutions stored in file: "solutions"
```

trait/effect			
level	solution		
1	1	1	2.3877
2	1	1	52.4449
1	1	2	3.2180
2	1	2	0.0000
1	2	1	0.2243
2	2	1	-0.0210
1	2	2	-0.8217
2	2	2	-0.3866
1	2	3	-0.4969
2	2	3	-0.7512
1	2	4	0.6178
2	2	4	-0.0769
1	2	5	0.2217
2	2	5	1.0851

Appendix C (test-day model)

This test-day model example comes from the paper of Schaeffer and Dekkers (WCGALP94 18:443). The files used in this example are available here.

Model

$$
y_{i j k l}=h_{i}+\beta_{1} X_{1 j}+\beta_{2} X_{2 j}+a_{k}+\gamma_{1 k} x_{1 j}+\gamma_{2 k} X_{2 j}+e_{i j k l}
$$

where
$y_{i j k l}-$ yield of test day
h_{i} - test day effect
$\mathrm{X}_{1 \mathrm{j}}$ - days in milk
$\mathrm{X}_{2 \mathrm{j}}-\log$ (days in milk)
β_{1}, β_{2} - fixed regressions
a_{k} - random animal
$\gamma_{1 k}, \gamma_{2 k}$ - random regressions for each animal
and

$$
\operatorname{var}\left(\mathrm{e}_{\mathrm{ijk}}\right)=1 ; \operatorname{var}\left(\mathrm{a}_{\mathrm{k}}, \gamma_{1 \mathrm{k}}, \gamma_{2 \mathrm{k}}\right)=[2.254 \text {-.7; } 41375 \text { 12;-. } 71294]^{-1}
$$

Data file (Irsrrdat)
Format: $\mathrm{h} / \mathrm{a} / \mathrm{X}_{1} / \mathrm{X}_{2} / \mathrm{y}$
11731.4298526
12342.1939529
1383.6408737
$\begin{array}{llll}2 & 1 & 123 & 0.908127\end{array} 23$
22841.2894918
23581.6598725
2454.1108744
$\begin{array}{llll}3 & 1 & 178 & 0.538528 \\ 21\end{array}$
321390.7858388
$\begin{array}{llll}3 & 3 & 113 & 0.99292419\end{array}$
34601.6259729
421840.5053761
$43158 \quad 0.65771715$
441051.0663522
45143.0812535
532180.33581711
$\begin{array}{llll}5 & 4 & 165 & 0.61436614\end{array}$
$\begin{array}{llll}5 & 5 & 74 & 1.41625 \\ 23\end{array}$
56312.2863228
632680.1293257
642150.3496748
651240.9000317
66811.3258622

Pedigree file (Irsrrrel)
Format: animal/sire/dam
197
2108
392
4108

```
5 11 7
6 11 1
700
800
900
10 0 0
110}
Parameter file (exlrsrr)
# Example of single-trait random-regression model
DATAFILE
Irsrrdat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
6
OBSERVATION(S)
5
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
16 cross
31 cov
4 cov
211 cross
311 cov 2
411 cov 2
RANDOM_RESIDUAL VALUES
1
RANDOM_GROUP
45
RANDOM_TYPE
add_animal
FILE
Irsrrel
(CO)VARIANCES
.447906 -0.001334 0.003506
-0.001334 0.000732 -0.000103
0.003506 -0.000103 . 010678
Execution
name of parameter file?exlrsrr
    BLUPF90 1.00
    Parameter file: exlrsrr
Data file: lrsrrdat
Number of Traits 1
Number of Effects 6
Position of Observations 5
Position of Weight (1) 0
Value of Missing Trait/Observation

\begin{tabular}{rrrr}
1 & 5 & 8 & -0.0238 \\
1 & 5 & 9 & 0.0350 \\
1 & 5 & 10 & -0.0238 \\
1 & 5 & 11 & -0.0008 \\
1 & 6 & 1 & -0.0370 \\
1 & 6 & 2 & 0.0325 \\
1 & 6 & 3 & -0.0479 \\
1 & 6 & 4 & 0.0767 \\
1 & 6 & 5 & -0.0149 \\
1 & 6 & 6 & -0.0377 \\
1 & 6 & 7 & -0.0103 \\
1 & 6 & 8 & 0.0364 \\
1 & 6 & 9 & -0.0480 \\
1 & 6 & 10 & 0.0364 \\
1 & 6 & 11 & -0.0145
\end{tabular}

\section*{Appendix D (multibreed maternal effect model)}

This model was used for studies on multibreed evaluation in beef cattle. It is provided as an example of a model with maternal effect and different models per trait.

Model (in concise form, with most indices omitted)
\[
\begin{aligned}
& \mathrm{y}_{1}=\mathrm{cg}_{1}+\mathrm{bt}+\mathrm{mbt}+\mathrm{a}+\mathrm{M} \quad+\mathrm{e} \\
& \mathrm{y}_{2}=\mathrm{cg}_{2}+\mathrm{bt}+\mathrm{mbt}+\mathrm{a}+\mathrm{M}+\mathrm{pe}+\mathrm{e} \\
& \mathrm{y}_{3}=\mathrm{cg}_{3}+\mathrm{bt}+\mathrm{mbt}+\mathrm{a}+\quad \mathrm{e}
\end{aligned}
\]
where
\(\mathrm{y}_{1-3}\) - birth weight, weaning weight, and gain
\(\mathrm{cg}_{1-3}\) - contemporary groups separate for each trait
br - breed type
mbt - maternal breed type
a - additive effect
m - maternal effect
pe - permanent environmental effect of the dam

\section*{Data file (data.out)}

Format:
1. contemporary group for trait 1
2. contemporary group for trait 2
3. contemporary group for trait 3
4. animal breed type
5. maternal breed type
6. animal id
7. dam id
8. birth weight
9. weaning weight
10. gain

Pedigree file (pedi.outok)
Format:
animal
sire or unknown parent group
dam or unknown parent group
" 1 + number of missing parents"
Parameter file (param.out)
DATAFILE
```

data.out
NUMBER_OF_TRAITS
3
NUMBER_OF_EFFECTS
6
OBSERVATION(S)
890
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT
NESTED]
123 133085 cross
44 181 cross
50 165 cross
6661724112 cross
70 1724112 cross
0701724112 cross
RANDOM_RESIDUAL VALUES
26.3 40.7 20.3
40.7 1312.9 141.9
20.3 141.9 1246.3
RANDOM_GROUP
4
RANDOM_TYPE
add_an_upg
FILE
pedi.outok
(CO)VARIANCES

22.9	36.3	18.6	-4.6	0.0	0.0
36.6	500.2	110.8	0.0	-91.6	0.0
18.6	110.8	313.0	0.0	0.0	0.0
-4.6	0.0	0.0	10.1	0.0	0.0
0.0	-91.6	0.0	0.0	419.1	0.0
0.0	0.0	0.0	0.0	0.0	0.0

RANDOM_GROUP
2
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES

0.263	0.0	0.0
0.0	13.129	0.0
0.0	0.0	12.463

RANDOM_GROUP
3
RANDOM_TYPE
diagonal
FILE

```
\begin{tabular}{lll}
\multicolumn{3}{l}{ (CO)VARIANCES } \\
0.263 & 0.0 & 0.0 \\
0.0 & 13.129 & 0.0 \\
0.0 & 0.0 & 0.0 \\
RANDOM_GROUP & \\
6 & & \\
RANDOM_TYPE & \\
diagonal & \\
FILE & & \\
& & \\
(CO)VARIANCES & \\
0.0 & 0.0 & 0.0 \\
0.0 & 45.5 & 0.0 \\
0.0 & 0.0 & 0.0
\end{tabular}

\section*{Appendix E (random regression model)}

A single-trait random regression model for test-day milk is using cubic Legendre polynomials.

Model
\[
y_{i j k l}=h y m_{i j}+\sum_{m=1}^{4} \alpha_{m}(I) h_{i m}+\sum_{m=1}^{4} \alpha_{m}(I) u_{k m}+\sum_{m=1}^{4} \alpha_{m}(I) p e_{i m}+e_{i j k l}
\]
where
```

y_{ijkl} - test day milk
hym $_{\mathrm{ij}}$ - hear-year-test for herd i and year-test j
h_{i} - effects of herd i
$\alpha_{m}(I)$ - value of m-th Legendre polynomial at point corresponding to DIM=|
u-additive effects
pe - permanent environmental effects

```

\section*{Data file (datarr)}

Format:
1.herd
2. hear-year-test

3-6. values of Legendre polynomials
7. weight for residuals: \(100 / \operatorname{var}\left(\mathrm{e}_{\mathrm{ijk}}\right)\)
8. test day
9. animal

Relationship file (pedirr)
Format:
animal
sire
dam

\section*{Parameter file (exrr3)}

DATAFILE
datarr
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
13
OBSERVATION(S)
8
```

WEIGHT(S)
7
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT
2 3726 cross \#herd-year-test
34 cov 1 \#herd
44 cov 1
54 cov 1
64 cov 1
321874 cov 9 \#additive
421874 cov 9
5 2 1 8 7 4 \operatorname { c o v } 9
61874 cov 9
321874 cov 9 \#pe
421874 cov 9
51874 cov 9
621874 cov 9
RANDOM_RESIDUAL VALUES
100
RANDOM_GROUP
678
RANDOM_TYPE
add_animal
FILE
pedirr
(CO)VARIANCES
(4 x 4 matrix)
RANDOM_GROUP
10111213
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
(4 x 4 matrix)

```

\section*{Appendix F (terminal cross model)}

A terminal cross model by Fernando et al. and Lo et al.


Data file (data cross)
1. \(\mathrm{cg} A(85\) levels)
2. cg \(B\) (110 levels)
3. cg crossbred (87 levels)
4. animal - breed A (2400 animals) or parent from breed A
5. animal - breed B (3000 animals) or parent from breed B
6. ya
7. yb
8. yc

Pedigree files: pedig_A for breed A and pedig_B for breed B

Parameter file
\# Example of a terminal-cross model
DATAFILE
data-cross
NUMBER_OF_TRAITS
3
NUMBER_OF_EFFECTS
3
OBSERVATION(S)
678
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
123110 cross
4042400 cross
0553000 cross
RANDOM_RESIDUAL VALUES
10000
01000
00100
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
pedig_A
(CO)VARIANCES
( \(3 \times 3\) matrix)
RANDOM_GROUP
3
RANDOM_TYPE
add_animal
FILE
pedig_B
(CO)VARIANCES
( \(3 \times 3\) matrix)

\section*{Appendix G (competitive model)}

Example of a competitive model (a la Muir and Schinkel)
\(y=c g+a+c 1+c 2+. .+c 5+e\)
ci is the effect of the i-th competitor; assumed pen size of up to 6 .

\section*{Datafile (data comp)}
1. y
2. \(\operatorname{cg}(\max 120)\)
3. animal (max 3000)
4. competitor 1
5. c 2
...
8. c 5

If pen size is less than 6 , unused fields set to 0 .

Parameter file
\# Example of a competitive model
DATAFILE
data_comp
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
7
OBSERVATION(S)
1
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
2120 cross
33000 cross
40 cross
50 cross
60 cross
70 cross
83000 cross

The \(2^{\text {nd }}\) effect (position 3 in the data) is additive direct effect and \(3^{\text {rd }}\) to \(7^{\text {th }}\) effects (positions 4 to 8 in the data) are competitive effects (animal ID for competitors).
RANDOM_RESIDUAL VALUES
50
RANDOM_GROUP
23
RANDOM_TYPE
add_animal
FILE

\section*{pedig \\ (CO)VARIANCES \\ 40-10 \\ -10 10}

The covariance matrix contains variance for the second effect, variance for effects 3 to 7
(accumulated to 7), and covariance between direct and competitive effects.

\section*{Appendix H (genomic model)}

Example of evaluation /variance component estimation using phenotypic, pedigree and genomic information in single-step evaluation

Files simulated by Huiyu Wang using program QMSim by Mehdi Sargolzaei \& Flavio Schenkel.
```

Parameter file for renumbering program RENUMF90
DATAFILE
phenotypes.txt
TRAITS
3
FIELDS_PASSED TO OUTPUT
WEIGHT(S)
RESIDUAL_VARIANCE
0.9038
EFFECT
1 cross alpha \#fixed effect
EFFECT
2 cross alpha \#animal
RANDOM
animal
FILE
pedigree
SNP_FILE
marker.geno.clean
(CO)VARIANCES
0.9951E-01

```

Phenotypes.txt - phenotype file
Single trait in position 3
Fixed effect in position 1 read as alphanumeric
Random animal effect in position 3
Pedigree file pedigrees
SNP file marker.geno.clean
Phenotype file
phenotypes.txt
114.160
123.470
134.50
144.970
155.980
166.630
173.320
185.850
194.770
\(\begin{array}{lll}1 & 104.220\end{array}\)
```

Pedigree file

```
pedigree
1000
2000
3000
4000
5000
```

6000
7000
8000
9000
10 0 0 0

```

\section*{SNP file for the first 50 SNP}
```

\$cut -c1-50 marker.geno.clean|head -10
8 0 0 2 2 1 1 0 1 0 1 1 0 0 2 0 1 2 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 2 1 1 1 1 1 2 1 0 1 0 0 ~
8014 211101011111011202211101111111112101112210100
8016 21100101202202021120210121102111202212111101
8018 21110111112201120210200020101022212211111100
8024211101022012011112202101111021222012211111111
8038 11110000102100120201211121201022112111121111
8041 22210001201201121110210121202111102102121001
8063 20110101202202020212211101101120222012120021
8065 21110101111112111221110101010220212001110012
808310111011110010111111110112100111121011010121

```
Run RENUMF90
```

RENUMF90 version 1.86
name of parameter file?renum.par
renum.par
datafile:phenotypes.txt
traits: 3
fields passed: 4
R
0.9038
Processing effect 1 of type cross
item kind=alpha
Processing effect 2 of type cross
item_kind=alpha
pedig}ree file name "pedigree"
positions of animal, sire, dam, alternate dam and yob
3 0 0
SNP file name "marker.geno.clean"
all pedigrees to be included
Reading (CO)VARIANCES: 1 x 1
Maximum size of character fields: 20
Maximum size of record (max_string_readline): 800
Maximum number of fields innput file (max_field_readline): 100

```

```

Basic statistics for input data (missing value code is 0)
Pos Min Max Mean ND N
3 0.73000 8.8300 4.9793 1.0069 15800

```
```

 random effect with SNPs 2
 type: animal
file: marker.geno.clean
read SNPs 1500 records
Effect group 2 of column 15800 levels
random effect 2
type:animal
opened output pedigree file "renadd02.ped"
read 15800 pedigree records
Pedigree checks
Number of animals with records: }1580
Number of animals with genotypes: 1500
Number of animals with records or genotypes: }1580
Number of animals with genotypes and no records 0
Number of parents without records or genotypes: 0
Total number of animals: }1580
Wrote cross reference IDs for SNP file "marker.geno.clean_XrefID"
Wrote parameter file "renf90.par"
Wrote renumbered data "renf90.dat"
Parameter file for application programs with renumbered fields

```
```

renf90.par

```
renf90.par
# BLUPF90 parameter file created by RENF90
DATAFILE
renf90.dat
NUMBER_OF_TRAITS
    1
NUMBER_OF_EFFECTS
    2
OBSERVATION(S)
    1
WEIGHT(S)
```

renf90.dat - phenotype file
Single trait in position 1
Two effects in model
Fixed effect in position 1 cross-classified with 1 level (μ)
Animal effect in position 3
Second effect (Random Group 2) is additive-animal with
renadd02.ped - pedigree file
SNP file marker.geno.clean

```
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
    2 1 cross
    3 15800 cross
RANDOM_RESIDUAL VALUES
    0.9038
RANDOM_GROUP
        2
RANDOM_TYPE
add_animal
FILE
renadd02.ped
(CO)VARIANCES
0.9951E-01
OPTION SNP_file marker.geno.clean
```

```
Renumbered pedigree file
```

renadd02.ped

```
1 5742 14705 1 0 2 1 0 0 14670
2 2302 1384 1 0 2 1 0 0 12367
4248 15309 1 0 12 1 0 2 9123
4241 3492 1 0 2 1 0 0 7455
14459 14202 1 0 2 1 0 0 5736
1029 1292 1 0 2 1 0 3 5877
710876 7596 1 0 2 1 0 0 9638
813589 12642 1 0 2 1 0 0 14136
97070 11562 1 0 2 1 0 0 6010
106449 244810 2 1 0 0 15498
```

```
Renumbered phenotype file
```

renf90.dat
4.16159030
3.47136280
4.5113290
4.971148080
5.981124810
6.631102050
3.32179350
5.85156390
4.77133480
4.22119510

Run BLUPF90

```
name of parameter file?renf90.par
    * SNP file: marker.geno.clean
    * SNP Xref file: marker.geno.clean_XrefID
    * Frequency to Center Z=M-p to creàte G=ZZ'/k (default whichfreq = 2):
        2
        BLUPF90 1.42
```



```
Residual (co)variance Matrix
0.90380
Random Effect(s) 2
Type of Random Effect: additive animal
Pedigree File:
renadd02.ped
    trait effect (CO)VARIANCES
    1 2 0.9951E-01
REMARKS
    (1) Weight position 0 means no weights utilized
    (2) Effect positions of 0 for some effects and traits means that such
        effects are missing for specified traits
    Data record length =
        3
    # equations =
        15801
G
    0.99510E-01
```

```
mead l 15800 records in 3.5994001E-02 s, 31601 nonzeroes
*-------------------------------------------------------------------**
* Setup Genomic: Version 1.76
* Modified relationship matrix (H) created for effect: 2 *
*-------------------------------------------------------------------*
Read 15800 animals from pedigree file
Pedigree was in not chronological order (parent first format), reodering will be performed!!!
Current OPTIONS
Genomic Matrix 
Rel. Matrix A22
    Make/Read 
Inv. Genomic Matrix
    Make/Read Which Save Test File 
Inv. Rel. Matrix A22
    Make/Read Which Save Test File StorageType
Genomic - A22 Matrix 
Inv. Genomic- A22 Matrix
    Make/Read Which Save Test File StorageType
            Make 0 F F GimA22i densem
Other options
        Allele Frequency file: freqdata
        Center Allele Frequency: 2
        Scale Allele Frequency: 2
        Scale Method:
        Regression G on A: F
        Tuned G Method:
        2
        Creation of GimA22i
            tau inv(alpha G + beta A22 + gamma I + delta) - omega inv(A22)
\begin{tabular}{lll} 
alpha, beta & 0.950 & 0.050 \\
gamma, delta & 0.000 & 0.000 \\
tau, omega & 1.000 & 1.000
\end{tabular}
Number of Genotyped Animals
    1 5 0 0
Creating A22
        Extracting subset of: 3432 pedigrees from: 15800 elapsed time: 0.0000
        Calculating Inbreeding by M&L function.. elapsed time 1.0000020E-03
        Calculating A22 Matrix by Colleau ...elapsed time 0.3299500
```


Statistics for A22

Statistic of Rel. Matrix A22	
N	
Diagonal	1500
Off-diagonal	2248500

Mean	Min	Max	Var
1.001	1.000	1.250	0.000
0.003	0.000	0.750	0.001

[^0]

```
Average denom. (scale): 1415.90178466665
```

Center Matrix elapsed: 8.3986998E-02
Creating G Matrix
Calculating G Matrix
Wall time: 08-05-2011 16h 57m 34s 213
MMP - OPTML
Elapsed time 18.47419
Wall time: 08-05-2011 16h 58m 09s 371

Statistics of G calculated assuming current allele frequencies

Statistic of Genomic Matrix				Max	Var
	N	Mean	Min	Max	1.463

	N	Mean	Min	Max	Var
Diagonal	1500	1.001	1.000	1.250	0.000
Off-diagonal	2248500	0.003	0.000	0.750	0.001

Statistics of G after scaling as in Chen et al (2011) or Vitezica et al. (2011)
Statistics should be same as for A22.

```
Final Genomic Matrix
```

Statistic of Genomic Matrix

				Max	Mar
	N	Mean	Min	Max	0.002
Diagonal	1500	1.001	0.896	1.447	0.002

```
Correlation of Genomic Inbreeding and Pedigree Inbreeding
    Correlation: 0.3363
All elements - Diagonal / Off-Diagonal
    Estimating Regression Coefficients G = b0 11' + b1 A + e
    Regression coefficients b0 b1 = 0.000 0.995
    Correlation all elements G & A 0.663
Off-Diagonal
    Using 70386 elements from A22 >= 0.02000
    Estimating Regression Coefficients G = b0 11' + b1 A + e
    Regression coefficients b0 b1 = -0.001 0.998
    Correlation Off-Diagonal elements G & A 0.679
```

Creating A22-inverse
Wall time: 08-05-2011 16 h 58 m 10s 866
Inverse using ginv2
elapsed time 3.54446100000000
Wall time: 08-05-2011 16h 58m 17s 691
Statistics of $\mathrm{A}_{22}{ }^{-1}$
Statistic of Inv. Rel. Matrix A22

	N	Mean	Min	Max	Var
Diagonal	1500	1.607	1.056	9.221	0.575
Off-diagonal	2248500	-0.001	-1.067	0.533	0.001

Creating G-inverse
Wall time: 08-05-2011 16h 58m 17s 987
Inverse using ginv2
elapsed time 4.24635400000000
Wall time: 08-05-2011 16h 58m 26s 044

Statistics of G^{-1}

$2 \mathrm{xdiag}\left(\mathrm{G}^{-1}-\mathrm{A}_{22^{-1}}\right)$ is approx. measure of extra genomic info in terms of effective daughters

Statistic of Inv. Genomic Matrix					
	N	Mean	Min	Max	Var
Diagonal	1500	8.007	3.597	64.893	21.055
Off-diagonal	2248500	-0.005	-12.697	6.632	0.056

Solution file

solutions

trait/effect level			solution
1	1	1	4.97591211
1	2	1	0.10194865
1	2	2	0.33749439
1	2	3	0.04475742
1	2	4	-0.31055520
1	2	5	0.22368631
1	2	6	-0.09454804
1	2	7	-0.03186435
1	2	8	0.18033163

[^1]name of parameter file?renf90.par

* SNP file: marker.geno.clean
* SNP Xref file: marker.geno.clean_XrefID
* Frequency to Center $Z=M-p$ to create $G=Z Z ' / k$ (default whichfreq $=2$):

AI-REMLF90 ver. 1.96

Parameter file:	renf90.par
Data file:	renf90.dat
Number of Traits	1
Number of Effects	2
Position of Observations	1
Position of Weight (1)	0
Value of Missing Trait/Observation	

Statistic of Inv. Genomic Matrix

	N	Mean	Min	Max	Var
Diagonal	1500	8.007	3.597	64.893	21.055
Off-diagonal	2248500	-0.005	-12.697	6.632	0.056


```
new G
    0.53164
    -2logL = 52785.1635385807 : AIC = 52789.1635385807
    In round 5 convergence= 2.804695847240073E-009
    delta convergence= 1.777604045032979E-005
new R
    0.49400
new G
    0.53167
Estimates of variance components
Final Estimates
    Genetic variance(s) for effect 2
    0.53167
Residual variance(s)
    0.49400
    inverse of AI matrix (Sampling Variance)
    0.40448E-03 -0.17367E-03
-0.17367E-03 0.14702E-03
Correlations from inverse of AI matrix
    1.0000 -0.71219
-0.71219 1.0000
SE for R
    0.12125E-01
SE for G
0.20112E-01
solutions stored in file: "solutions"
```


Appendix I (complete genomic analysis)

Data files are available at http://nce.ads.uga.edu/wiki/doku.php?id=course_materials__from_uga_2014.

Using RENUMF90, PREGSF90, BLUPF90 (BLUP), BLUPF90 (ssGBLUP), PREDICTF90, POSTGSF90 (ssGWAS)

Simulated data

Single trait with heritability of 0.30 and phenotypic variance $=1.0$
Five generations
Total of 994 parents from generations 1 to 4 were genotyped
Three hundred progeny from $5^{\text {th }}$ generation had genotypes and pedigree, but phenotypes were removed for traditional and genomic evaluations

Data Structure:

\#Animal Generation Sex Mu QTL Residual Phenotype \quad (Phenotype $=$ Mu + QTL + Residual)
$\begin{array}{llllll}1 & 0 & 1 & 1 & -0.826104 & 1.586661 \\ 1.76056\end{array}$
$2011-1.093034-0.451821-0.544855$
$3011-0.1358240 .9849361 .84911$
$401100.044242-0.8021450 .242097$
$\begin{array}{llllllll}5 & 0 & 1 & 1 & 0.342068 & 0.028434 & 1.3705\end{array}$

```
6095 5 1 1 1.801324 -0.494822 2.3065
6096 5 2 1 0.772964 0.791936 2.5649
609752 1 0.748241 0.285815 2.03406
6098 5 1 1 1.042522 -1.606656 0.435866
6099 5 1 1 0.891319 0.179843 2.07116
6100 5 1 1 0.745873 0.034715 1.78059
```

Pedigree: 6100 animals
\#Animal Sire Dam
100
200
300
400
500

609545764403
609645764065
609745762263
609845764150
609945763690
610045764311

Genotypes: 1294 animals genotyped for 1000 SNP across 5 chromosomes
\# Animal SNP $_{1}$ SNP $_{2}$ SNP $_{3}$ SNP $_{4}$ SNP $_{5}$... SNP $_{1000}$
$6100 \quad 22212 \ldots 1$

```
Map:
#SNP order chromosome position
1 1 10010
2 1 16722
3 1 33444
4150166
51 66888
    •
10005299878
Parameter file for RENUMF90
DATAFILE
newdata.txt
TRAITS
7
FIELDS_PASSED TO OUTPUT
2
WEIGHT(S)
RESIDUAL_VARIANCE
0.70
EFFECT
4 cross alpha #mu
EFFECT
1 cross alpha #animal
RANDOM
animal
FILE
ped.txt
FILE_POS
12300
SNP_FILE
snp.txt
PED_DEPTH
O
(CO)VARIANCES
0.30
OPTION chrinfo map.txt
Log file for RENUMF90
RENUMF90 version 1.104
    name of parameter file? renum.par
    datafile:newdata.txt
    traits: }
    fields passed: 2
R
    0.7000
Processing effect 1 of type cross
item_kind=alpha
Processing effect 2 of type cross
```

```
item_kind=alpha
pedigree file name "ped.txt"
positions of animal, sire, dam, alternate dam and yob 1 1 2 3 0 0
SNP file name "snp.txt"
all pedigrees to be included
Reading (CO)VARIANCES: 1 x 1
Maximum size of character fields: 20
Maximum size of record (max_string_readline) : 800
Maximum number of fields for input file (max_field_readline): 100
hash tables for effects set up
read 6100 records
table with 1 elements sorted
added count
Effect group 1 of column 1 with 1 levels
lable expanded from 10000 to 10000 records 
Effect group 2 of column
Basic statistics for input data (missing value code is 0)
Pos Min Max Mean ND N
    7 -2.8883 5.0863 1.0042 0.99034 
random effect with SNPs 2
type: animal
file: snp.txt
read SNPs 1294 records
Effect group 2 of column 1 with 6100 levels
random effect 2
type:animal
opened output pedigree file "renadd02.ped"
read 6100 pedigree records
Pedigree checks
Number of animals with records: 6100
Number of animals with genotypes: 1294
Number of animals with records or genotypes: 6100
Number of animals with genotypes and no records 0
Number of parents without records or genotypes: 0
Total number of animals: 6100
Wrote cross reference IDs for SNP file "snp.txt_XrefID"
Wrote parameter file "renf90.par"
Wrote renumbered data "renf90.dat"
Parameter file for PREGSF90 without quality control
DATAFILE
renf90.dat
NUMBER_OF_TRAITS
    1
NUMBER_OF_EFFECTS
    2
```

```
OBSERVATION(S)
    1
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
2 1 cross
3 6100 cross
RANDOM_RESIDUAL VALUES
    0.70000
RANDOM_GROUP
    2
RANDOM_TYPE
add_animal
FILE
renadd02.ped
(CO)VARIANCES
0.30000
OPTION SNP_file snp.txt
OPTION chrinfo map.txt
OPTION no_quality_control
Log file for PREGSF90 without quality control
```

```
name of parameter file?
```

name of parameter file?
renf90.par
renf90.par
preGS 1.10
preGS 1.10
Parameter file: renf90.par
Parameter file: renf90.par
Data file: renf90.dat
Data file: renf90.dat
Number of Traits 1
Number of Traits 1
Number of Effects 2
Number of Effects 2
Position of Observations 1
Position of Observations 1
Position of Weight (1) 0
Position of Weight (1) 0
Value of Missing Trait/Observation 0
Value of Missing Trait/Observation 0
EFFECTS
EFFECTS
\# type position (2) levels [positions for nested]
\# type position (2) levels [positions for nested]
1 cross-classified
1 cross-classified
Residual (co)variance Matrix
Residual (co)variance Matrix
0.70000
0.70000
Random Effect(s) 2
Random Effect(s) 2
Type of Random Effect: additive animal
Type of Random Effect: additive animal
Pedigree File: renadd02.ped
Pedigree File: renadd02.ped
trait effect (CO) VARIANCES
trait effect (CO) VARIANCES
1 2 0.3000
1 2 0.3000
REMARKS
REMARKS
(1) Weight position 0 means no weights utilized
(1) Weight position 0 means no weights utilized
(2) Effect positions of 0 for some effects and traits means that such
(2) Effect positions of 0 for some effects and traits means that such
effects are missing for specified traits
effects are missing for specified traits
Options read from parameter file:
Options read from parameter file:
* SNP file: snp.txt

```
    * SNP file: snp.txt
```

```
* SNP Xref file: snp.txt XrefID
* Map file: map.txt
* No Quality Control Checks !!!!! (default .false.): T
*------------------------------------------------------------------------
* Genomic Library: Version 1.164 *
* Optimized OpenMP Version *
* Modified relationship matrix (H) created for effect: 2 *
*--------------------------------------------------------------------*
Read 6100 animals from pedigree file: "renadd02.ped"
Number of Genotyped Animals: 1294
Creating A22
    Extracting subset of: 2312 pedigrees from: 6100 elapsed time:
    0.0150
    Calculating A22 Matrix by Colleau OpenMP...elapsed time: . 0190
    Numbers of threads=8 16
Reading SNP file
    Column position in file for the first marker: 8
    Format to read SNP file: (7x,400000i1)
    Number of SNPs: 1000
    Number of Genotyped animals: 1294
    Reading SNP file elapsed time: . 06
Statistics of alleles frequencies in the current population
    N: 1000
    Mean: 0.504
    Min: 0.043
    Max: 0.929
    Var: 0.032
Reading MAP file: "map.txt" - }1000\mathrm{ SNPs out of 1000
    Min and max # of chromosome: 1 5
    Min and max # of SNP: 1 1000
Genotypes missings (%): 0.000
Calculating G Matrix
    Dgemm MKL #threads= 8 16 Elapsed omp_get_time: 0.7359
Scale by Sum(2pq). Average: 435.221580281360
Blend G as alpha*G + beta*A22: (alpha,beta) 0.950 0.050
Frequency - Diagonal of G
    N: 1294
    Mean: 0.999
    Min: 0.895
    Max: 1.468
    Range: 0.029
    Class: 20
#Class Class Count
\begin{tabular}{llr}
1 & 0.8949 & 27 \\
2 & 0.9236 & 109 \\
3 & 0.9523 & 300 \\
4 & 0.9810 & 380
\end{tabular}
```

5	1.010	287
6	1.038	137
7	1.067	33
8	1.096	14
9	1.124	3
10	1.153	1
11	1.182	0
12	1.210	2
13	1.239	0
14	1.268	0
15	1.296	0
16	1.325	0
17	1.354	0
18	1.382	0
19	1.411	0
20	1.440	1
21	1.468	0

Check for diagonal of genomic relationship matrix

Check for diagonal of genomic relationship matrix, genotypes not removed: 0

Final Pedrigree-Based Matrix						
Statistic of Rel. Matrix A22						
	N	Mean	Min	Max	Var	
Diagonal	1294	1.001	1.000	1.250	0.000	
Off-diagonal	1673142	0.005	0.000	0.750	0.001	
Final Genomic Matrix						
Statistic of Genomic Matrix						
	N	Mean	Min	Max	Var	
Diagonal	1294	1.001	0.898	1.469	0.002	
Off-diagonal	1673142	0.005	-0.158	0.791	0.002	
Correlation of Genomic Inbreeding and Pedigree Inbreeding						
All elements - Diagonal / Off-Diagonal						
Estimating Regression Coefficients G = b0 11' + b1 A + e						
Regression coefficients b0 b1 = 0.000 0.991						
Correlation all elements G \& A 0.717						
Off-Diagonal						
Using 83426 elements from A22 >= . 02000						
Estimating Regression Coefficients $G=b 011^{\prime}+b 1 \mathrm{~A}+\mathrm{e}$ Regression coefficients b0 b1 = -0.003 0.999						
Correlation Off-Diagonal elements G \& A 0.777						
Creating A22-inverse						
Inverse LAPAC	dpotrf	threa	8	lapsed	_get	0.1071

```
    Final A22 Inv Matrix
------------------------
Statistic of Inv. Rel. Matrix A22
\begin{tabular}{lrrrrr} 
& N & Mean & Min & Max & Var \\
Diagonal & 1294 & 1.851 & 1.067 & 5.812 & 0.431 \\
Off-diagonal & 1673142 & -0.001 & -1.200 & 0.600 & 0.001
\end{tabular}
Creating G-inverse
    Inverse LAPACK MKL dpotrf/i #threads= 8 16 Elapsed omp_get_time: 0.1050
    ----------
    Final Genomic Inv Matrix
-----------------------------
Statistic of Inv. Genomic Matrix
\begin{tabular}{lrrrrr} 
& N & Mean & Min & Max & Var \\
Diagonal & 1294 & 13.457 & 5.827 & 45.588 & 27.985 \\
Off-diagonal & 1673142 & -0.010 & -13.500 & 6.896 & 0.226
\end{tabular}
Check for diagonal of Inverse Genomic - Inverse of pedigree relationship matrix
Saving GimA22i in file: "GimA22i"
    Final G Inv - A22 Inv Matrix
Statistic of Inv. Genomic- A22 Matrix
\begin{tabular}{lrrrrr} 
& N & Mean & Min & Max & Var \\
Diagonal & 1294 & 11.606 & 4.746 & 40.310 & 21.707 \\
Off-diagonal & 1673142 & -0.009 & -12.500 & 6.396 & 0.211
\end{tabular}
*----------------------------*
* Setup Genomic Done !!! *
*------------------------**
Parameter file for PREGSF90 with quality control
DATAFILE
renf90.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
1
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
21 cross
36100 cross
RANDOM_RESIDUAL VALUES
0.70000
RANDOM_GROUP
2
RANDOM_TYPE
```

add_animal
FILE
renadd02.ped
(CO)VARIANCES
0.30000
OPTION SNP_file snp.txt
OPTION chrinfo map.txt

Log file for PREGSF90 with quality control

```
name of parameter file?
renf90.par
    preGS 1.10
    Parameter file: renf90.par
Data file: renf90.dat
Number of Traits 1
Number of Effects 2
Position of Observations 1
Position of Weight (1) 0
Value of Missing Trait/Observation 0
EFFECTS
    # type position (2) levels [positions for nested] 
    2 cross-classified 
    Residual (co)variance Matrix
    0.70000
    Random Effect(s) 2
    Type of Random Effect: additive animal
    Pedigree File: renadd02.ped
    trait effect (CO) VARIANCES
    1 2 0.3000
    REMARKS
    (1) Weight position 0 means no weights utilized
    (2) Effect positions of 0 for some effects and traits means that such
        effects are missing for specified traits
Options read from parameter file:
    * SNP file: snp.txt
    * SNP Xref file: snp.txt_XrefID
    * Map file: map.txt
    *--------------------------------------------------------------------*
    * Genomic Library: Version 1.164 *
    * *
    * Optimized OpenMP Version *
    * *
    * Modified relationship matrix (H) created for effect: 2 *
    *-------------------------------------------------------------------*
Read 6100 animals from pedigree file: "renadd02.ped"
Number of Genotyped Animals: 1294
```

Creating A22

```
    Extracting subset of: 2312 pedigrees from: 6100 elapsed time: 0.0160
    Calculating A22 Matrix by Colleau OpenMP...elapsed time: . 0189
    Numbers of threads=8 16
Reading SNP file
    Column position in file for the first marker: 8
    Format to read SNP file: (7x,400000i1)
    Number of SNPs: 1000
    Number of Genotyped animals: 1294
    Reading SNP file elapsed time: . 06
Statistics of alleles frequencies in the current population
    N: 1000
    Mean: 0.504
    Min: 0.043
    Max: 0.929
    Var: 0.032
Reading MAP file: "map.txt" - 1000 SNPs out of 1000
    Min and max # of chromosome: 1 5
    Min and max # of SNP: 1 1000
Quality Control - SNPs with Call Rate < callrate ( 0.90) will removed: 0
Quality Control - SNPs with MAF < minfreq ( 0.05) will removed: 1
Quality Control - Monomorphic SNPs will be removed: 0
Quality Control - Removed Animals with Call rate < callrate ( 0.90): 0
Quality Control - Check Parent-Progeny Mendelian conflicts
    Total animals: 6100 - Genotyped animals: 1294 - Effective: 1294
    Number of pairs Individual - Sire: 450
    Number of pairs Individual - Dam: 440
    Number of trios Individual - Sire - Dam: 206
    No sex Chromosome information is available
    Parent-progeny conflicts or HWE could eliminate SNPs in sex Chr
    Provide map information and sex Chr to checks using autosomes
Checking SNPs for Mendelian conflicts
    Total number of effective SNP: 999
    Total number of parent-progeny evaluations: 890
    Number of SNPs with Mendelian conflicts: 0
Checking Animals for Mendelian conflicts
    Total number of effective SNP for checks on Animals: 999
    Number of Parent-Progeny Mendelian Conflicts: 0
Number of effective SNPs (after QC): 999
Number of effective Indiviuals (after QC): 1294
Statistics of alleles frequencies in the current population after
Quality Control (MAF, monomorphic, call rate, HWE, Mendelian conflicts)
```

N:	999
Mean:	0.504
Min:	0.051
Max:	0.929
Var:	0.032

Check for diagonal of genomic relationship matrix

Check for diagonal of genomic relationship matrix, genotypes not removed: 0

Final Pedrigree-Based Matrix

Statistic of Rel. Matrix A22

			Man	Max	Var
Diagonal	N	Mean	Min	1.250	0.000
Off-diagonal	1673142	0.005	0.000	0.750	0.001

Statistic of Genomic Matrix						
	N	Mean	Min	Max	Var	
Diagonal	1294	1.001	0.898	1.470	0.002	
Off-diagonal	1673142	0.005	-0.158	0.791	0.002	
Correlation of Genomic Inbreeding and Pedigree Inbreeding Correlation: 0.2180						
All elements - Diagonal / Off-Diagonal						
Estimating Regression Coefficients G = b0 11' + b1 A + e						
Regression coefficients b0 b1 = 0.000 0.991						
Correlation all elements G \& A 0.717						
Off-Diagonal						
Using 83426 elements from A22 >= . 02000						
Estimating Regression Coefficients $G=\mathrm{b} 011{ }^{\prime}+\mathrm{b} 1 \mathrm{~A}+\mathrm{e}$						
Regression coefficients b0 b1 = -0.003 0.999						
Correlation Off-Diagonal elements G \& A 0.777						
Creating A22-inverse						
Inverse LAPACK MKL dpotrf/i \#threads= 8 16 Elapsed omp_get_time: 0.1068						
Final A22 Inv Matrix						
Statistic of Inv. Rel. Matrix A22						
	N	Mean	Min	Max	Var	
Diagonal	1294	1.851	1.067	5.812	0.431	
Off-diagonal	1673142	-0.001	-1.200	0.600	0.001	
Creating G-inverse						
Inverse LAPAC	dpotrf/i	\#thread	- 8	Elapsed	omp_get_time:	0.1047
Final Genomic Inv Matrix						
Statistic of Inv. Genomic Matrix						
	N	Mean	Min	Max	Var	
Diagonal	1294	13.466	5.863	45.587	28.023	
Off-diagonal	1673142	-0.010	-13.521	6.897	0.227	
Check for diagonal of Inverse Genomic - Inverse of pedigree relationship matrix						
Saving GimA22i in file: "GimA22i"						
Final G Inv - A22 Inv Matrix						
Statistic of Inv. Genomic- A22 Matrix						
	N	Mean	Min	Max	Var	
Diagonal	1294	11.615	4.782	40.309	21.740	
Off-diagonal	1673142	-0.009	-12.521	6.397	0.211	

```
* Setup Genomic Done !!! *
*--------------------------*
```

Parameter file for PREGSF90 with quality control, removing SNP from chromosome 5 and saving the clean SNP file
DATAFILE
renf90.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
1
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
21 cross
36100 cross
RANDOM_RESIDUAL VALUES
0.70000

RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
renadd02.ped
(CO)VARIANCES
0.30000

OPTION SNP_file snp.txt
OPTION chrinfo map.txt
OPTION excludeCHR 5
OPTION saveCleanSNPs

Log file for PREGSF90 with quality control, removing SNP from chromosome 5 and saving the clean SNP file
name of parameter file?
renf90.par
pregs 1.10
Parameter file: renf90.par
Data file: renf90.dat
Number of Traits 1
Number of Effects 2
Position of Observations 1
Position of Weight (1) 0
Value of Missing Trait/Observation 0
EFFECTS

$\#$	type	position (2)	levels
1	cross-classified	2	
2	cross-classified	3	

```
Residual (co)variance Matrix
0.70000
Random Effect(s) 2
Type of Random Effect: additive animal
Pedigree File: renadd02.ped
trait effect (CO)VARIANCES
    1 2 0.3000
REMARKS
    (1) Weight position 0 means no weights utilized
    (2) Effect positions of 0 for some effects and traits means that such
        effects are missing for specified traits
Options read from parameter file:
* SNP file: snp.txt
* SNP Xref file: snp.txt_XrefID
* Map file: map.txt
* Save Clean SNP data to (SNP_file)_clean file (default .false.)
* Exclude Chromosomes (default .false.): 5
*----------------------------------------------------------------------
* Genomic Library: Version 1.164 *
* Optimized OpenMP Version *
* Modified relationship matrix (H) created for effect: 2 *
*-----------------------------------------------------------------------
Read 6100 animals from pedigree file: "renadd02.ped"
Number of Genotyped Animals: }129
Creating A22
    Extracting subset of: 2312 pedigrees from: 6100 elapsed time: 0.0150
    Calculating A22 Matrix by Colleau OpenMP...elapsed time: . 0190
    Numbers of threads=8 16
Reading SNP file
    Column position in file for the first marker: 8
    Format to read SNP file: (7x,400000i1)
    Number of SNPs: 1000
    Number of Genotyped animals: }129
    Reading SNP file elapsed time: . }0
Statistics of alleles frequencies in the current population
    N: 1000
    Mean: 0.504
    Min: 0.043
    Max: 0.929
    Var: 0.032
Reading MAP file: "map.txt" - }1000\mathrm{ SNPs out of 1000
    Min and max # of chromosome: 1 5
    Min and max # of SNP: 1 1000
Excluded 199 SNPs from 1 chromosomes: 5
Quality Control - SNPs with Call Rate < callrate ( 0.90) will removed: 199
```

```
Quality Control - SNPs with MAF < minfreq ( 0.05) will removed: 1
Quality Control - Monomorphic SNPs will be removed: 0
Quality Control - Removed Animals with Call rate < callrate ( 0.90): 0
Quality Control - Check Parent-Progeny Mendelian conflicts
    Total animals: 6100 - Genotyped animals: 1294 - Effective: 1294
    Number of pairs Individual - Sire: 450
    Number of pairs Individual - Dam: 440
    Number of trios Individual - Sire - Dam: 206
    No sex Chromosome information is available
    Parent-progeny conflicts or HWE could eliminate SNPs in sex Chr
    Provide map information and sex Chr to checks using autosomes
Checking SNPs for Mendelian conflicts
    Total number of effective SNP: 801
    Total number of parent-progeny evaluations: 890
    Number of SNPs with Mendelian conflicts: 0
Checking Animals for Mendelian conflicts
    Total number of effective SNP for checks on Animals: 801
    Number of Parent-Progeny Mendelian Conflicts: 0
Number of effective SNPs (after QC): 801
Number of effective Indiviuals (after QC): 1294
Statistics of alleles frequencies in the current population after
Quality Control (MAF, monomorphic, call rate, HWE, Mendelian conflicts)
    N: 801
    Mean: 0.503
    Min: 0.051
    Max: 0.928
    Var: 0.032
List of SNPs removed in: "snp.txt_SNPs_removed"
Clean genotype file was created: "snp.txt_clean" New files with clean genotypes
Cross reference ID file was created: "snp.txt_clean_XrefID"
Genotypes missings (%): 19.900
Genotypes missings after cleannig (%): 0.000
Calculating G Matrix
    Dgemm MKL #threads= 8 16 Elapsed omp_get_time: 0.8764
Scale by Sum(2pq). Average: 349.571560214902
Blend G as alpha*G + beta*A22: (alpha,beta) 0.950 0.050
Frequency - Diagonal of G
    N: 1294
    Mean: 1.000
```

Min:	0.874	
Max :	1.593	
Range:	0.036	
Class:	20	
\#Class	Class	Count
1	0.8741	17
2	0.9100	107
3	0.9460	341
4	0.9819	419
5	1.018	281
6	1.054	98
7	1.090	20
8	1.126	4
9	1.162	4
10	1.198	1
11	1.234	0
12	1.270	1
13	1.306	0
14	1.342	0
15	1.377	0
16	1.413	0
17	1.449	0
18	1.485	0
19	1.521	0
20	1.557	1
21	1.593	0

Check for diagonal of genomic relationship matrix
Check for diagonal of genomic relationship matrix, genotypes not removed: 0

Parameter file for PREGSF90 with quality control and PCA analysis

Include extra option: OPTION plotpca


```
Parameter file for BLUPF90 without genomic information
DATAFILE
renf90_5.dat
NUMBER_OF_TRAITS 
    1
NUMBER_OF_EFFECTS
    2
OBSERVATION(S)
    1
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
    2 cross
    3 6100 cross
RANDOM_RESIDUAL VALUES
    0.70000
RANDOM_GROUP
    2
RANDOM_TYPE
add_animal
FILE
renadd02.ped
(CO)VARIANCES
    0.30000
OPTION conv_crit 1e-15
                                Default convergence criteria = 1e-12
Log file for BLUPF90 without genomic information
```

renf90.par
* convergence criterion (default=1e-12): 1.0000000E-15
BLUPF90 1.48

Parameter file:	renf90.par
Data file:	renf90_5.dat
Number of Traits	1
Number of Effects	2
Position of Observations	1
Position of Weight (1)	0
Value of Miscing	

EFFECTS

```

```

Residual (co)variance Matrix
0.70000
Random Effect(s) 2
Type of Random Effect: additive animal
Pedigree File: renadd02.ped
trait effect (CO)VARIANCES
1 2 0.3000
REMARKS
(1) Weight position 0 means no weights utilized
(2) Effect positions of 0 for some effects and traits means that such
effects are missing for specified traits
Data record length = 3

equations = 6101

G
0.30000
read 6100 records in 1.4997000E-02 s, 12201
nonzeroes
read 6100 additive pedigrees
finished peds in 1.9996000E-02 s, 27178 nonzeroes
round = 1 convergence = 0.1730E-03
round = 2 convergence = 0.7971E-03
round = 3 convergence = 0.5923E-04
round = 4 convergence = 0.6219E-04
round = 5 convergence = 0.2122E-04
round = 40 convergence = 0.1230E-13
round = 41 convergence = 0.3164E-14
round = 42 convergence = 0.2804E-14
round = 43 convergence = 0.1081E-14
round = 44 convergence = 0.5761E-15
44 iterations, convergence criterion= 0.5761E-15
solutions stored in file: "solutions"

```

\section*{Solutions for BLUPF90 without genomic information}
\begin{tabular}{ccrr}
\multicolumn{2}{c}{ trait/effect level } & \multicolumn{1}{l}{ solution } \\
1 & 1 & 1 & 1.02176505 \\
1 & 2 & 1 & -0.24665178
\end{tabular}
\begin{tabular}{rrrr}
1 & 2 & 2 & 0.16420973 \\
1 & 2 & 3 & 0.32371581 \\
1 & 2 & 4 & 0.00318130 \\
1 & 2 & 5 & -0.13277100
\end{tabular}
```

The solution file (solutions) has 4 columns:
1) Trait [only }1\mathrm{ trait in this example]
2) Effect [we have 2 effects: overall mean (effect 1) and
additive genetic direct (effect 2)]
3) Level [number of the level for each effect in the model]
4) Solution

```

\section*{EBV accuracy}

If accuracy of EBV is desired, it can be calculated based on standard errors (se) for EBV.
BLUPF90 has an option for calculating se:

OPTION sol se

Solutions for BLUPF90 with option to calculate se
\begin{tabular}{|c|c|c|c|c|c|}
\hline trait & f & & solution & s.e. & \\
\hline 1 & 1 & 1 & 1.02176504 & 0.02496866 & \\
\hline 1 & 2 & 1 & -0.24665117 & 0.39158195 & \multirow[t]{3}{*}{The solution file now includes a \(5^{\text {th }}\) column with EBV standard errors} \\
\hline 1 & 2 & 2 & 0.16421026 & 0.40488662 & \\
\hline 1 & 2 & 3 & 0.32371755 & 0.29405286 & \\
\hline 1 & 2 & 4 & 0.00318218 & 0.38229658 & \\
\hline 1 & 2 & 5 & -0.13277154 & 0.46566701 & \\
\hline
\end{tabular}

Parameter file for BLUPF90 with genomic information (ssGBLUP)
DATAFILE
renf90_5.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
observation(s)
1
weight(s)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
```

2 1 cross
3 6100 cross
RANDOM_RESIDUAL VALUES
0.70000
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
renadd02.ped
(CO)VARIANCES
0.30000
OPTION SNP_file snp.txt
OPTION chrinfo map.txt
OPTION conv_crit 1e-15

```
```

Log file for BLUPF90 with genomic information (ssGBLUP)
name of parameter file?
renf90.par
* convergence criterion (default=1e-12): 1.0000000E-15
Options read from parameter file:
* SNP file: snp.txt
* SNP Xref file:snp.txt_XrefID
* Map file: map.txt
BLUPF90 1.48
Parameter file: renf90.par
Data file: renf90_5.dat
Number of Traits 1
Number of Effects 2
Position of Observations 1
Position of Weight (1) 0
Value of Missing Trait/Observation 0
EFFECTS

$\#$	type	levels	[positions (2) for nested]
1	cross-classified	2	
2			1
2	3		6100

Residual (co)variance Matrix
0.70000
Random Effect(s) 2
Type of Random Effect: additive animal
Pedigree File: renadd02.ped
trait effect (CO) VARIANCES
1 2 0.3000
REMARKS
(1) Weight position 0 means no weights utilized
(2) Effect positions of 0 for some effects and traits means that such
effects are missing for specified traits
Data record length = 3

equations = 6101

G
0.30000
read 6100 records in 0.1499770 s, 12201
nonzeroes
read 6100 additive pedigrees

* Genomic Library: Version 1.164 *
* *
* Optimized OpenMP Version *
* *
* Modified relationship matrix (H) created for effect: 2 *
--
Read 6100 animals from pedigree file: "renadd02.ped"
Number of Genotyped Animals: 1294
Creating A22

```
```

 Extracting subset of: 2312 pedigrees from: 6100 elapsed time: 0.0150
 Calculating A22 Matrix by Colleau OpenMP...elapsed time: . }034
 Numbers of threads=8 16
 Reading SNP file
Column position in file for the first marker: 8
Format to read SNP file: (7x,400000i1)
Number of SNPs: 1000
Number of Genotyped animals: 1294
Reading SNP file elapsed time: . 06
Statistics of alleles frequencies in the current population
N: 1000
Mean: 0.504
Min: 0.043
Max: 0.929
Var: 0.032
Reading MAP file: "map.txt" - }1000\mathrm{ SNPs out of 1000
Min and max \# of chromosome: 1 5
Min and max \# of SNP: 1 1000
Quality Control - SNPs with Call Rate < callrate (0.90) will removed: 0
Quality Control - SNPs with MAF < minfreq (0.05) will removed: 1
Quality Control - Monomorphic SNPs will be removed: 0
Quality Control - Removed Animals with Call rate < callrate (0.90): 0
Quality Control - Check Parent-Progeny Mendelian conflicts
Total animals: 6100 - Genotyped animals: 1294 - Effective: 1294
Number of pairs Individual - Sire: 450
Number of pairs Individual - Dam: 440
Number of trios Individual - Sire - Dam: 206
No sex Chromosome information is available
Parent-progeny conflicts or HWE could eliminate SNPs in sex Chr
Provide map information and sex Chr to checks using autosomes
Checking SNPs for Mendelian conflicts
Total number of effective SNP: 999
Total number of parent-progeny evaluations: 890
Number of SNPs with Mendelian conflicts: 0
Checking Animals for Mendelian conflicts
Total number of effective SNP for checks on Animals: 999
Number of Parent-Progeny Mendelian Conflicts: 0
Number of effective SNPs (after QC): 999
Number of effective Indiviuals (after QC): 1294
Statistics of alleles frequencies in the current population after
Quality Control (MAF, monomorphic, call rate, HWE, Mendelian conflicts)

```
\begin{tabular}{lr} 
N: & 999 \\
Mean: & 0.504 \\
Min: & 0.051 \\
Max: & 0.929 \\
Var: & 0.032
\end{tabular}


Check for diagonal of genomic relationship matrix

Check for diagonal of genomic relationship matrix, genotypes not removed: 0
```

Final Pedrigree-Based Matrix

```

Statistic of Rel. Matrix A22
\begin{tabular}{lrrrrr} 
& N & Mean & Min & Max & Var \\
Diagonal & 1294 & 1.001 & 1.000 & 1.250 & 0.000 \\
Off-diagonal & 1673142 & 0.005 & 0.000 & 0.750 & 0.001
\end{tabular}

\begin{tabular}{lrrrrr} 
& N & Mean & Min & Max & Var \\
Diagonal & 1294 & 11.615 & 4.782 & 40.309 & 21.740 \\
Off-diagonal & 1673142 & -0.009 & -12.521 & 6.397 & 0.211
\end{tabular}
```

* Setup Genomic Done !!! *
_----------------------

```
\begin{tabular}{lrrrr} 
hash matrix increased from & 131072 to & 262144 \% filled: & 0.8000 \\
hash matrix increased from & 262144 to & \(524288 \%\) filled: & 0.8000 \\
hash matrix increased from & 524288 to & \(1048576 \%\) filled: & 0.8000 \\
hash matrix increased from & 1048576 to & 2097152 \% filled: & 0.8000 \\
finished peds in 25.61810 & s, & 861721 nonzeroes & \\
round \(=\) & 1 & & & \\
round \(=\) & 2 & convergence \(=\) & \(0.6397 \mathrm{E}-03\) & \\
round \(=\) & 3 & & & \\
round \(=\) & 4 & & & \\
round \(=\) & 5 & convergence \(=\) & \(0.3112 \mathrm{E}-03\) & \\
\end{tabular}
```

round = 90 convergence = 0.3590E-14
round = 91 convergence = 0.2549E-14
round = 92 convergence = 0.2022E-14
round = 93 convergence = 0.1453E-14
round = 94 convergence = 0.9599E-15
94 iterations, convergence criterion= 0.9599E-15
solutions stored in file: "solutions"

```

\section*{Solutions for BLUPF90 with genomic information (ssGBLUP)}

The solution file has the same format as in blupf90 without genomic information. The option for calculating se for EBV can also be used here.

\section*{Parameter file for PREDICTF90}

Predictivity can be measured as correlation between adjusted phenotypes and (G)EBV. In this example we show how to use PREDICTF90 to adjust phenotypes for genotyped animals in the validation population.

\section*{1) Adjusting phenotypes}

As this program needs solution file, it can be run in the same folder as BLUP with complete data
\begin{tabular}{l|l|} 
Parameter file: & \begin{tabular}{l} 
pred.dat is the data file only for genotyped animals \\
in the \(5^{\text {th }}\) generation (validation animals). Lines can \\
De extracted from renf90.dat
\end{tabular} \\
\begin{tabular}{l} 
DATAFILE \\
pred.dat
\end{tabular} & \\
\(\quad 1\) \\
NUMBER_OF_TRAITS & \\
\(\quad 2\) \\
OBSERVATION(S) \\
\(\mathbf{1}\) \\
WEIGHT(S)
\end{tabular}
```

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
2 1 cross
3 6100 cross
RANDOM_RESIDUAL VALUES
0.70000
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
renadd02.ped
(CO)VARIANCES
0.30000
OPTION include_effects 2

```
Log file for adjusting phenotypes for genotyped animals in \(5^{\text {th }}\) generation
name of parameter file?
pred.par
```

*** include effets to predict Yhat n, effects 1 2
PREDICTF90 1.3
Parameter file:
Residual (co)variance Matrix
0.70000
Random Effect(s) 2
Type of Random Effect: additive animal
Pedigree File: renadd02.ped
trait effect (CO)VARIANCES
1 2 0.3000
REMARKS
(1) Weight position 0 means no weights utilized
(2) Effect positions of 0 for some effects and traits means that such
effects are missing for specified traits
Data record length = 3

equations = 6101

*** effets to include in Yhat (T/F): F T
solutions read from file: soltutions
Animal Effect: 2
y(s), yhat(s), residual(s) in written in "yhat_residual" file
300 records read
Trait: 1 300
mean Y -5.204056186291079E-002 var Y 0.979795877964320

```
```

 mean Yhat -1.187536126623551E-002 var Yhat 7.349890384221654E-002
 cov (Y,Yhat) 8.232182257800019E-002 corr (Y,Yhat) 0.306765659847626
 wrote bvs for animals in data in file "bvs.dat"

```

\section*{Output files from PREDICTF90}
yhat_residual
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{yhat_residual has 4 columns: animal | y | yhat | residual} & \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& 4644 \\
& 2176
\end{aligned}
\]} & -0.266520 & 0.415535 & 0.339710 & \multirow[t]{5}{*}{Because OPTION include_effects 2 was used: \(y\) is phenotype minus all effects other than animal yhat receives the second effect, which is the animal effect residual is phenotype minus animal effect} \\
\hline & -0.418925 & 0.094263 & 0.508577 & \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{2}{|l|}{bvs.dat} & & & \\
\hline
\end{tabular}


Hint: corr (Y,Yhat) from the output of PREDICTF90 (corr (Y,Yhat) 0.306765659847626 ) should not be used as a measure of predictivity because it uses adjusted phenotypes and EBVs from the same dataset. Usually, predictivity requires phenotypes adjusted for fixed effects in the complete data (benchmark) and (G)EBVs calculated from the reduced data (without records for validation animals). The regular predictivity measure is: corr[Y_from_PREDICTf90, (G)EBV_reduced]

For this small example with 1 trait, a general Linux code to merge files is:
```

\$awk '{print \$1,\$2}' ebv_complete/yhat_residual | sort +0 -1 > Y
\$awk '{if (\$2==2) print \$3,\$4}' ebv_reduced/solutions | sort +0 -1 > ebv.temp
\$awk '{if (\$2==2) print \$3,\$4}' gebv_reduced/solutions | sort +0 -1 > gebv.temp
\$join -1 +1 -2 +1 Y ebv.temp > file1.temp
\$join -1 +1 -2 +1 file1.temp gebv.temp > Y_ebv_gebv

```

An \(R\) code to calculate correlations is:
```

pred <- read.table("Y_ebv_gebv",header=F)
ebv_predictivity <- cor(pred[,2],pred[,3]); ebv_predictivity
gebv_predictivity <- cor(pred[,2],pred[,4]); gebv_predictivity

```

\section*{Parameter files for GWAS using ssGBLUP (ssGWAS)}

Run BLUPF90 with genomic information and salve \(\mathrm{G}^{-1}\) and \(\mathrm{A}_{22^{-1}}\)

\section*{DATAFILE}
renf90.dat
NUMBER_OF_TRAITS
```

 1
 NUMBER_OF_EFFECTS
2
OBSERVATION(S)
1
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
2 1 cross
3 6100 cross
RANDOM_RESIDUAL VALUES
0.70000
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
renadd02.ped
(CO)VARIANCES
0.30000
OPTION SNP_file snp.txt
OPTION chrinfo map.txt
OPTION no_quality_control

```

Weights for SNP can be updated by an iterative process, where the initial weights are all equal to 1 .

Linux code to get initial weights for 1000 SNP:
\$awk 'BEGIN \(\{\) for ( \(i==1 ; i<1000 ; i++\) ) print 1\(\}\) ' > wei
```

OPTION saveGInverse
OPTION saveA22Inverse
OPTION weightedG wei
Run POSTGSF90 and read G-1 and A22 -1
DATAFILE
renf90.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
1
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
2 1 cross
3 6100 cross
RANDOM_RESIDUAL VALUES
0.70000
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
renadd02.ped
(CO)VARIANCES
0.30000

```

OPTION SNP_file snp.txt OPTION chrinfo map.txt OPTION no_quality_control OPTION Manhattan_plot OPTION readGInverse OPTION readA22Inverse OPTION weightedG wei OPTION windows_variance 5

Manhattan plots for SNP windows variance


Manhattan plots for SNP effect using moving average of 2 SNP


\section*{Output files for ssGWAS}
```

snp_sol

1	2	1	1	0	$0.7001368 \mathrm{E}-02$	0.2209213	0.1119293	$0.1126648 \mathrm{E}-03$
1	2	2	1	0	$-0.1359349 \mathrm{E}-01$	0.5065436	0.2104747	$0.2118577 \mathrm{E}-03$
1	2	3	1	0	$0.8714214 \mathrm{E}-02$	0.3917027	0.7757968	$0.7808942 \mathrm{E}-03$
1	2	4	1	0	$-0.4223401 \mathrm{E}-02$	$0.6873333 \mathrm{E}-01$	1.271113	$0.1279465 \mathrm{E}-02$
1	2	5	1	0	$0.5471629 \mathrm{E}-03$	$0.1539137 \mathrm{E}-02$	1.261010	$0.1269296 \mathrm{E}-02$

```
```

snp_sol has 9 columns because "OPTION windows_variance" was used:
trait| effect | SNP | chromosome | position | SNP_solution | weight | % of variance explained by n
adjacent SNP | variance explained by n adjacent SNP

```
chrsnpvar
\begin{tabular}{llllll}
1 & 2 & 0.1119293459 & 1 & 1 & 0 \\
1 & 2 & 0.2104747339 & 2 & 1 & 0 \\
1 & 2 & 0.7757968029 & 3 & 1 & 0 \\
1 & 2 & 1.2711127978 & 4 & 1 & 0 \\
1 & 2 & 1.2610103595 & 5 & 1 & 0
\end{tabular}

\footnotetext{
chrsnpvar has 6 columns:
trait | effect \| \% of variance explained by \(n\) adjacent SNP | SNP | chromosome | position

This file is used by POSTGSF90 for Manhattan plots
}

\section*{Appendix J (custom relationship matrices)}

When a relationship (or dispersion) matrix cannot be created within the application programs, it can be prepared separately and then included as a custom relationship matrix. Two options exist for inclusion of such a matrix. Option user_file incorporates this matrix directly. Option user_file_inv incorporates the inverse of this matrix.

The example below presents a model from the previous Appendix with matrix \(\mathbf{H}^{-1}\) created externally and then read as a custom matrix. The custom matrix (Hinverse.txt) is stored as below, with each line containing: row, column and value.
```

 3.0000
 422-1.0000
 870 0.5000
 4326-1.0000
4612-1.0000
6096 6100 -0.0527
6097 6097 2.5000
6098 6098 11.0000
6099 6099 2.0000
6100 6100 12.0236

```

\section*{Parameter file for BLUPF90 with a custom relationship matrix}
```

DATAFILE
renf90_5.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
1
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
2 1 cross
3 6100 cross
RANDOM_RESIDUAL VALUES
0.70000
RANDOM_GROUP
2
RANDOM_TYPE
user_file
FILE
Hinverse.txt
(CO)VARIANCES
0.30000
OPTION conv_crit 1e-15

```
```

Log file for BLUPF90 with a custom relationship matrix
name of parameter file?
user.par

* convergence criterion (default=1e-12): 1.0000000E-15
BLUPF90 1.48
Parameter file: user.par
Data file: renf90_5.dat
Number of Traits 1
Number of Effects 2
Position of Observations 1
Position of Weight (1) 0
Value of Missing Trait/Observation 0
EFFECTS

\# type	position (2)	levels
1 cross-classified	2	
2 cross-classified	3	6100

Residual (co)variance Matrix
0 . 7 0 0 0 0
Random Effect(s) 2
Type of Random Effect: user defined from file

User File:	Hinverse.txt		
trait effect	(CO)VARIANCES	\quad	The name of custom matrix used is shown here
:---			

 1 2 0.3000
 REMARKS
(1) Weight position O means no weights utilized
(2) Effect positions of 0 for some effects and traits means that such
effects are missing for specified traits
Data record length = 3

equations = 6101

G
0.30000
read 6100 records in 4.7991998E-02 s, 12201 nonzeroes
...
g_usr_inv: read 855620 elements
largest row, column, diagonal: 6100 6100 6100
..
finished peds in 1.776729 s, 861721 nonzeroes
round = 1 convergence = 0.5737E-03
...
round = 80 convergence = 0.9128E-15
80 iterations, convergence criterion= 0.9128E-15
solutions stored in file: "solutions"

```

\section*{Appendix K (selected programming details)}

This section provides some programming insights into an early version of the blupf90 program. The model is completely described in the module MODEL.
```

module model
implicit none
! Types of effects
integer,parameter::effcross=0,\& !effects can be cross-classified
effcov=1 !or covariables
! Types of random effects
integer, parameter :: g_fixed=1,\& ! fixed effect
g_diag=2, \& ! diagonal
g_A=3, \& ! additive animal
g_A_UPG=4, \& ! additive animal with unknown
\& g_A_UPG_INB=5, \& ! additive animal with unknown
\& g_As=6,\& ! additive sire
g_PD =7, \& ! parental dominance
g_last=8 ! last type
character (40) :: parfile, \& !name of parameter file
datafile !name of data set
integer :: ntrait,\& !number of traits
neff,\& !number of effects
miss=0 !value of missing trait/effect

```

```

integer,allocatable :: pos_eff(:,:),\& !positions of effects for each trait
nlev(:),\& !number of levels
effecttype(:),\& !type of effects
nestedcov(:,:),\&!position of nesting effect for each trait
! if the effect is nested covariable
\& randomtype(:),\& ! status of each effect, as above
randomnumb(:) ! number of consecutive correlated effects
character (40),allocatable:: randomfile(:) ! name of file associated with given
! effect
real, allocatable :: r(:,:),\& !residual (co)variance matrix
rinv(:,:),\& ! and its inverse
g(:,:,:) ! The random (co)variance matrix for each trait
end module model

```

The core of the program is presented below.
```

program BLUPF90
use model;use sparsem; use sparseop
implicit none
real,allocatable :: y(:),\& ! observation value
indata(:) ! one line of input data
weight_y ! weight for records
type (sparse_hashm)::xx ! X'X in sparse hash form

```
```

type (sparse_ija):: xx_ija
real, allocatable:: xy(:),sol(:)
real,allocatable :: weight cov(:,:)
integer,allocatable:: addrēss(:,:) ! start and address of each effect
integer :: neq,io,\&
data_len,\&
i,j,k,l
real:: val, dat_eff
!
call read_parameters
call print_parameters
neq=ntrait`sum(nlev)
data len=max (pos weight,maxval (pos y),maxval (pos eff))
print̄*,'Data recörd length = ',data_len
allocate (xy(neq), sol(neq),address(neff,ntrait) ,\&
weight_cov(neff,ntrait),y(ntrait),indata (data_len))
call zerom(xx,neq) ; xy=0
!
call setup_g ! invert R matrices
open(50,file=datafile) !data file
! Contributions from records
do
read(50,*,iostat=io) indata
if (io.ne.0) exit
call decode_record
call find_addresses
call find_rinv
do i=1,neff
do j=1,neff
do k=1,ntrait
do l=1,ntrait
val=weight_cov(i,k) *weight_cov(j,l)*weight_y*rinv (k,l)
call addm(val,address (i,k),address(j,l),xx)
enddo
enddo
enddo
do k=1,ntrait
do l=1,ntrait
xy (address (i,k)) =xy (address (i,k)) +rinv(k,l)*y(l)*weight_cov(i,k) \&
*weight_y
enddo
enddo
enddo
enddo
!
! Random effects' contributions
do i=1,neff
select case (randomtype(i))
case (g_fixed)
continue ! fixed effect, do nothing
case (g_diag)
call add_g_diag(i)
case (g_A, g_As, g_A_UPG,g_A_UPG_INB)
call add_\overline{g}_add(randomtype(i),\overline{i})
case (g_PD)
call-add_g_domin(i)
case default
print*,'unimplemented random type',randomtype(i)
endselect
enddo
if (neq < 15) then
print*,'left hand side'
call printm(xx)
print '('' right hand side:'' ,100f8.1)',xy
endif

```
```

call solve_iterm(xx,xy,sol)
! Comment the line above and uncomments the lines below only if
! solutions by FSPAK are desired
!xx_ija=xx;
!call fspak90('solve',xx_ija,xy,sol)
if (neq <15) print '('' solution:'' ,100f7.3)',sol
call store_solutions

```

\section*{Modules and Libraries}

\section*{Module DENSEOP}

Subroutines and functions for dense matrix manipulation in Fortran 90.
Uses F90 LAPACK implementation by Alan Miller for some low level routines.

Written by: Tomasz Strabel \& Ignacy Misztal, University of Georgia e-mail: strabel@au.poznan.pl, ignacy@uga.edu, Oct/5/98-June 8, 2006

The module implements matrix operations on dense general and symmetric matrices. Each subroutine/function is overloaded to work with several types of arguments. The module is primarily designed for matrix operations where timing and memory requirements are not critical.

\section*{Symmetric matrices}

Each of the functions/subroutines works with full-stored and packed (half-stored) matrices. Each matrix or vector can be single or double precision. However, in one function/subroutine, all arguments should be of the same precision, and all matrices should be stored the same way.

\section*{Subroutines}
\begin{tabular}{ll} 
call chol (a, rank) & - Cholesky decomposition \\
call inverse_s \((A, r a n k)\) & - Generalized inverse: \(\mathrm{Al}=\mathrm{A}-\) \\
call eigen \((\mathrm{A}, \mathrm{d}, \mathrm{V})\) & - Eigenvalues and eigenvectors: \(\mathrm{A}=\mathrm{V} \operatorname{diag}(\mathrm{d}) * \mathrm{~V}^{\prime}\) \\
call solve_s \((\mathrm{A}, \mathrm{b}, \mathrm{x})\) & - Generalized solutions: \(\mathrm{x}: \mathrm{Ax}=\mathrm{b}\)
\end{tabular}

The optional variable rank returns the rank of the matrix.

\section*{Functions}
\begin{tabular}{ll} 
fchol (A) & - Cholesky decomposition \\
finverse_S (A) & - Generalized inverse \\
fsolve_s (A, b) & - Generalized solve \\
fdet_s (A) & - Determinant of A
\end{tabular}

Procedures for symmetric matrices work with generalized matrices. Redundant rows/columns equations are determined by operational zero, which is kept in global variable denseop_tol with default value is \(10-10\). To change the limit, change the value of the variable in the application program, e.g., denseop_tol=1d-12

\section*{Conversions}

Let \(A\) be a square matrix and \(A P\) be a packed matrix
call packit (A, AP) - Conversion from square to packed form; only lower-diagonal elements are used.
call unpackit (AP, A) - Conversion from packed to square form; the matrix is assumed symmetric.

\section*{General matrices}

Each matrix or vector can be single or double precision. However, in one function/subroutine, all arguments should be of the same precision. All matrices are assumed full-rank.

\section*{Subroutines}
call inverse (A) - Inverse: \(A I=A-1\) call solve(A, \(b, x) \quad\) - Solutions: \(x: A x=b\)

\section*{Functions}
\(A I=f i n v e r s e(A) \quad-\) Returns inverse: \(A I=A x=f s o l v e(A, b) \quad-\) Computes solutions: \(x: A x=b\)

\section*{Printing}
call printmat (matrix, text, fmt, un) print any type of matrix using the specified format fmt and preceded by text. Both text and fmt are optional. If optional un is present, the output is send to file with unit un.
Warning: The printmat function prints the symmetric packed matrices in full. If a half-stored matrix is in packed form, it will be printed as full-stored matrix.

\section*{Additional subroutines and functions}

The subroutine(s) and functions below work only with double precision arguments (r8) and fullstored matrices.
call pos_def (x,text, min_eig, stat) Corrects \(X\) if it is not "sufficiently" positivedefinite; ignores rows/columns with 0 elements only.
\(X\) - real (r8) symmetric square matrix
text - optional character variable that is printed if \(X\) is corrected
min_eig - optional real (r8) variable that sets the minimum relative eigenvalue in \(X\); if min_eig is missing, 1 e-5 is used.
stat - optional logical variable that is set to .true. if \(X\) was corrected and .false. if not.
\(A=\) diag \((\mathrm{b}) \quad\) - creates square diagonal real ( r 8 ) matrix with values of real ( r 8 ) vector \(b\) on diagonal
\(b=\) diag (A) - creates real ( r 8 ) vector b containing diagonals of real ( r 8 ) matrix A
\(A=k r o n(B, C)-A=B\) "Kronecker product" C; works with real( \(r 4\) ) and real ( \(r 8\) ) matrices

\section*{Technical details}

The basic operations are done in full storage and double precision. Operations with other formats and precision are obtained by conversions. Computing of eigenvalues/eignevectors and general matrix
operations use parts of LAPACK subroutines as converted by Alan Miller. These subroutines may contain many more functionality than necessary and may be trimmed to reduce size of the object code.

The modules consist of two files:
lapack90r.f90 - Part of LAPACK denseop.f90 - Interfaces, subroutines, functions and conversion codes.
For compilation, module kind in file kind.f90 that contains definitions of single and double precision is also needed.

In the BLUPF90 distribution, these files are included in directory libs and are compiled as denseop.a. One way to use the denseop module is via a Makefile from an application program in the blupf90 package.

\section*{Example (exdense.f90)}

Program Example:
```

use kinds; use denseop
real (r4):: xpacked4(3)=(/1,3,10/) ! Symmetric packed single
precision
real (r4)::x4(2,2) ! Full single precision
real (r8)::x8(2,2) ! Full double precision
call printmat(xpacked4,' X ')
call printmat(fchol(xpacked4),' Cholesky(X) ','(10(f10.2))')
x4=xpacked4
x8=x4
print*,' Determinant(xpacked4)=',fdet_s(xpacked4)
print*,' Determinant(x8)=', fdet_s(x8)
print*,' Determinant(x4)=',fdet_s(x4)
end

```

\section*{Compilation}

To compile standalone:
```

f90 kind.f90 lapack90r.f90 denseop.f90 exdense.f90

```

This assumes that all files are in the same directory.
To compile in subdirectory of the blupf90 distribution under Linux/Absoft,
```

f90 -p ../libs exdense.f90 ../libs/denseop.a

```
where option -p specifies library directory. This option (-p) is different under different platforms.
See documentation on blupf90 distribution for details.

\section*{Module SPARSEM}

Collection of sparse matrix modules for Fortran 90 useful in animal breeding problems

Written by: Ignacy Misztal, University of Georgia e-mail: ignacy@uga.edu, 9/4/1997-5/25/2007

\section*{Introduction}

Traditionally, programming in animal breeding is done in 2 stages: in a matrix language and in a regular programming language. Programs in a matrix language such as IML SAS, Matlab, Mathematica or APL are reasonably simple and useful for creating examples but inefficient for large problems. Programs in a regular programming language such as Fortran or \(\mathrm{C} / \mathrm{C}++\) are much more efficient but could take much longer to write and require substantial training.

Matrix languages are easy to deal with matrices partly because usually only one format is usually supported: dense rectangular. Operations on such matrices are easy to specify and program, but large matrices require large memory and long running time. Also, memory and computations are equal whether matrices are sparse (contain very few nonzero elements) or not. In animal breeding, many matrices are sparse. If that sparsity is taken into account, the memory requirements and computations can decrease dramatically. Unfortunately, there is more than one format for storing sparse matrices, and some computations are fast with one format and but not with another one. Also, the storage formats and operations are considerably more complicated than dense rectangular matrices. A library to handle multiple matrix formats and multiple operations would contain many subroutines, each with a long list of arguments. Such a library would involve considerable learning, and many details associated with the library would create many opportunities for making a mistake.

One matrix package, Matlab, has some forms of sparse-matrix storage and operations included.

Modern programming languages with "object-oriented" features, such as C++ or Fortran 90, have abilities to create classes/modules, where many implementation details on specific data structures can be hidden. A technique called overloading allows single function/subroutine to work with different formats of its arguments. Therefore, the number of details to remember can be drastically reduced. Subsequently, programming can be done much easier and quicker.

SPARSEM is a module for Fortran 90 that enables programming common sparse matrix operations almost as easily as with dense matrices. It supports two dense matrix formats, useful for testing, and two sparse matrix formats. Changing a program from dense to sparse-matrix format using DENSEM can be as simple as changing one declaration line. SPARSEM incorporates an interface to FSPAK, which enables efficient sparse matrix factorization, solving, sparse inversion and calculation of determinant on matrices much larger than possible with dense matrix structures.

\section*{Matrix formats}

Four matrix formats are available.
DENSEM - dense square matrix.
DENSE_SYMM -dense symmetric upper-stored.
It has approximately only half memory requirements of the dense square matrix.
SPARSE_HASHM - sparse triple accessed by hash algorithm.
This is a very efficient format for set-up and for iterative-solving of sparse matrices.
SPARSE_IJA - Sparse IJA.
This is a memory-efficient format for sparse matrices used by sparse matrix packages. Format
IJA cannot easily be set up directly but can be derived by conversion from the hash format.

For more information on all these formats see Duff et al, George and Liu, or my class notes.

A popular format that is not included here is linked list. That format is reasonably efficient for creating and computing with sparse matrices if the number of nonzero elements per row is not too high and the matrix is not too large. However, the combination of hash plus ija is generally more efficient.

\section*{Matrix operations}

The following subroutines/functions are supported. All real scalars and vectors are single precision unless indicated otherwise.
\begin{tabular}{lll} 
Operation & Description & Comments \\
call init( \(x\) ) & \begin{tabular}{l} 
Initialize \(x\) \\
Required by standard but \\
usually not necessary because \\
on most systems pointers are \\
initialized automatically
\end{tabular} \\
call zerom \((x, n)\) & \begin{tabular}{l} 
Allocate storage for \\
\(x\) as an \(n^{*} n\) matrix \\
and zero it
\end{tabular} & \begin{tabular}{l} 
If \(x\) was set before, it is \\
reallocated \({ }^{1}\)
\end{tabular} \\
call reset \((x)\) & Deallocates storage
\end{tabular}
call addm \((a, i, j, x) \quad\)\begin{tabular}{l} 
Add to matrix: \\
\(x(i, j)=x(i, j)+a\)
\end{tabular}\(\quad\) Does not work on SPARSE_IJA
\begin{tabular}{lll} 
call setm \((a, i, j, x)\) & \begin{tabular}{l} 
sets element of \\
matrix: \(x(i, j)=a\)
\end{tabular} & Does not work on SPARSE_IJA \\
\(y=\operatorname{getm}(i, j, x)\) & \begin{tabular}{l} 
find element of \\
matrix: \(y=x(1, j)\)
\end{tabular} & \begin{tabular}{l} 
real(4) function; returns lower- \\
diagonal elements of upper- \\
stored matrix
\end{tabular} \\
\(x=y\) & \begin{tabular}{l} 
Conversion \\
between formats
\end{tabular} & \begin{tabular}{l} 
Conversion from sparse to \\
dense formats may require too \\
much storage
\end{tabular} \\
call printm \((x)\) & \begin{tabular}{l} 
Prints \(x\) as square \\
matrix
\end{tabular} & \begin{tabular}{l} 
print \((x, '\) internal') prints sparse \\
matrices in internal format
\end{tabular}
\end{tabular}
call solve_iterm(x,rs,sol) Solves: \(x\) sol=rs iteratively by SOR
\begin{tabular}{|c|c|c|}
\hline call default_iter (conv,maxround,relax, zerosol) & Changes default iteration parameters & All parameters are optional; default values are: conv(ergence criterion)=1e-10, max round(s)=1000, relax(ation factor)=1.0, zerosol(utions ar beginning of iteration) = .true. \\
\hline \(x=\operatorname{block}(\mathrm{y}, \mathrm{i} 1, \mathrm{i} 2, \mathrm{j} 1, \mathrm{j} 2)\) & Selects block from y :
\[
x=y(i 1: i 1, j 1: j 2)
\] & does not work on dense_symm format; may not work with unsymmetric blocks from symmetric matrices \\
\hline \(q=q u a d r f(u, x, v)\) & \(\mathrm{q}=\mathrm{u}^{\prime} \mathrm{X} v\) & real(8) function; does not work on dense_symm format \\
\hline tr \(=\) trace \((x, y)\) & Self explanatory & real(8) function; \(x\) and \(y\) must be in same formats; works on densem and sparse_ija formats only \\
\hline \[
\begin{aligned}
& \text { tr=traceblock(x,y,i1,i2,j1, } \\
& \text { j2) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { tr=trace(xy(i1:i2,j1:j } \\
& \text { 2)) }
\end{aligned}
\] & Works as a block-trace combination; produces correct results when blocks of \(y\) are nonsymmetric \\
\hline
\end{tabular}
\({ }^{1}\) The hash matrix is allocated for a default number of elements. If the default is too small, the hash matrix is enlarged automatically. To change the default \(p\) elements, use call zerom ( \(x, n, p\) ). One matrix element in hash format takes 12 bytes, and for efficient operation there should be at least \(10 \%\) more nonzero elements available than used.

All operations assume that the densem type is general while all the other types are upperstored.

Operations tr, quadf work with both upper- and full-stored matrices but the block operation works literally, i.e., selecting a lower block would return an empty matrix and selecting an upper block would return only an upper-stored matrix. This could be a source of incompatibility between densem and other formats that use the block operation without taking its limitations into consideration. Potential problems can be noticed in examples by printing matrices of interest.

\section*{Storage type}

Matrices in the hash or ija format are half-stored by default. To change the storage type to full, add the option ' f ' to the addm subroutine: call addm (a, i, j, x,' \(\mathrm{f}^{\prime}\) )
The subsequent conversion to the ija format will also be full-stored. For conversion from half-stored hash matrix to full-stored ija, please see a documentation for the GIBBS module.

The printing and other functions/subroutines have been designed for half-stored hash and ija matrices. Results may not be correct with full-stored matrices.

\section*{Numerical accuracy}

Module KINDS defines precision \(r 4\) to be equivalent to real*4, and \(r 8\) to be equivalent to \(r 8\). Precision rh can be set up to r4 or r8 dependent on whether memory or precision is more important.

Formats DENSEM, DENSE_SYMM, and SPARSE_IJA use precision r8. Format SPARSE_HASHM uses precision rh. Whenever the precision of numbers in SPARSEM functions/subroutines is not specified, it is of type rh. Setting rh to r4 is useful when memory usage needs to be reduced, e.g., for large BLUP programs. Setting rh to r8 is necessary when numerical accuracy is important, e.g., in variance component programs, and is usually a safer choice.

\section*{Diagnostics}

Printing of some diagnostic messages depends on the value of an integer variable sparsem_msg. The value of 3 means maximum diagnostic messages while the value of 0 means no diagnostic messages. The default is 2 . This variable can be set in any part of the application program using the module SPARSEM.

FSPAK90
FSPAK is a sparse matrix package written in F 77 that performs operations on sparse matrices in format SPARSE_IJA. Operations include solving a system of linear equations by factorization, calculating a (log)determinant or finding a sparse inverse of a matrix. A sparse inverse is such a matrix that contains inverse values only for those elements that were nonzero in the original matrix. For sparse matrices, FSPAK is very efficient computationally.
FSPAK90 is a F90 interface written to simplify the use of FSPAK.

A complete call to FSPAK90 is:
```

call fspak90(operation,ija,rs,sol,det,msglev,maxmem,rank)

```
where
\[
\begin{array}{lll}
\text { operation= "factorize" } & \text { - calculate sparse factorization } \\
\text { "invert" } & \text { - calculate sparse inverse } \\
\text { "solve" } & \text { - solve a system of equation } \\
\text { "reset" } & \text { - reset the storage } \\
\text { "det" } & \text { - calculate determinant } \\
\text { "stat" } & \text { - print statistics } \\
\text { "fact_mult" } & \text { - multiplication by Cholesky factor of the reordered } \\
& \text { matrix (if LL=IJA; sol=L*rs) } \\
\text { "inv_fact_mult" - solve the system formed by the Cholesky factor of the } \\
& \text { reordered matrix (sol: L*sol=rs) }
\end{array}
\]
ija = matrix in SPARSE_IJA form
rs = real ( r 4 ) or ( r 8 ) vector of right hand side,
sol = real (r4) or (r8), identical to precision of \(r s\), vector of solutions
det \(=\) real ( r 8 ) determinant or log-determinant
msglev= message level from 0 (minimum) to 3 (maximum); default=0 maxmem=maximum
memory available in the system; default=infinite
rank=rank of matrix

All the arguments of fspak90 except "operation" and "ija" are optional except when they are needed in a specific "operation". Thus, rs and sol are needed for solving and det for "det" or "ldet".

\section*{Examples:}

To solve:
call fspak90('solve',ija,rs,sol)
for both rs and sol either in single or double precision; all. Preceding steps are done automatically.

To solve using double precision right hand side and solutions:

> call fspak90('solve',ija,rs8=rs,sol8=sol)

To sparse invert:
```

 call fspak90('invert',ija)
    ```

To obtain the determinant d:
call fspak90('det', ija, det=d)
To obtain the log determinant ld:
call fspak90('ldet',ija,det=ld)
To obtain rank \(r\) with any operation:
call fspak90(.....,rank=r)
To force new factorization, when the input matrix has changed: call
```

fspak90('factor',ija)

```

To deallocate the internal memory:
call fspak90('reset')
To limit memory to a maximum od maxmem, e.g., 20,000k, with any operation call
fspak90(.................. . maxmem=20000)

Note that only relevant arguments for each step need to be included in calling FSPAK90. Reordering is performed the first time when FSPAK90 is called. Subsequent factorization except after the option "reset" will reuse the ordering. Subsequent solves will reuse the factorization.
Additionally:
To sample y from \(N(0, A)\) where \(x \sim N(0,1)\)
call fspak90 ('fact_mult',A,rs8=x,sol8=y)
To sample y from \(N\left(0, A^{-1}\right)\) where \(x \sim N(0,1)\)
call fspak90('inv_fact_mult',A,rs8=x,sol8=y)
For details of the last operations, see Appendix S2

\section*{Additional subroutines and functions:}

Function
\[
\begin{aligned}
& y=\operatorname{mult}(A, x) \\
& y=m u l t(x, A)
\end{aligned}
\]

Implements the matrix by vector multiplication for all matrix formats except dense_symm, and for double precision x and y .
Subroutine
call multmatscal \((A, x)\)
Implements \(A=A * x\) for all matrix formats except dense_symm, and for double precision x .

\section*{Hints on using SPARSEM}

Initially all the matrices can be implemented in DENSEM format. After the program works well with an example, convert all data structures for potentially large matrices to sparse formats and verify that same results are obtained.

\section*{Compiling}

Matrix types and functions subroutine are defined in module sparsem. Subroutine fspak90 is in module sparseop. Program xx.f90 can be compiled as
```

f90 -Maa xx.f90 aa/sparsem.a

```
where aa is the directory containing the modules and the library, and \(M\) is the option to include module directory.
Beginning in May, 1999, SPARSEM is part of a programming package that includes BLUPF90, REMLF90, GIBSF90 etc. Compilation for several Unix environments is automated by makefiles. To find details, read Readme and Installation files in the package distributions. To create application with SPARSEM and possibly other modules, create a subdirectory in the main directory of the package, and adapt a makefile from the existing directory, e.g., blup.

\section*{Sample Programs}

\section*{Dense matrix solution program}
```

program test_sparse_structures use
sparsem; use kinds Єype (densem)::x
integer,parameter ::n=5
integer :: i,j
real (rh):: rs(n),sol(n),val
call init(x)
call zerom(x,n)
! set up a sample matrix do
i=1,n
rs(i)=n+1-i
val=10.0*i/i
call addm(val,i,i,x)
do j=i+1,n
val=10.0*i/j
call addm(val,i,j,x); call addm(val,j,i,x)
enddo
enddo
print*,'rs: ',rs print*,'matrix' ; call printm(y) call
solve_iterm(y,rs,sol) !solve iteratively
print*,'sol: ',sol
end

```

\section*{Triangular dense matrix iterative-solution program}
type (dense symm): :x
(The rest of the program remains identical)

Sparse hash matrix iterative-solution program
```

type (sparse_hashm)::x

```

\section*{Sparse IJA matrix iterative-solution program}

Matrix in ija form cannot be set up directly but can be converted from hash form.
```

......
type (sparse_hashm)::x type
(sparse_ija)::y
y=x !conversion
call reset(x) ! Optional statement to release storage
print*,'rs: ',rs print*,'matrix' ; call printm(y) call
solve_iterm(y,rs,sol)
end

```

Sparse IJA matrix finite-solution and inversion program with FSPACK90
```

use sparsem use sparseop !fspak90 is in module sparseop
call fspak90('solve',y,rs,sol)
!now invert call
fspak90('invert',y)
call printm(y)
end

```

\section*{References}

George, A. and Liu, J.W.H. (1981) Computer solution of large sparse positive definite systems. PrenticeHall, Englewood Cliffs, N.J.

\section*{Appendix S1}

\section*{Definitions of structure (type)}
```

type densem !traditional dense square matrix
integer :: n
real(8) ,pointer::x(:,:)
end type densem
type dense_symm !upper stored symmetric dense matrix
integer ::n
real(8) ,pointer::x(:)
end type dense_symm
type sparse_hashm
integer:: n,\& ! for compatibility mainly
nel,\& ! number of elements filled,\&
! number of filled elements status !
1 if ready to hash, 2 if in sorted
! order
real (rh) , pointer :: x(:,:)
end type sparse_hashm
type sparse_ija
integer :: n,\& ! number of equations
nel ! number of nonzeroes
integer, pointer::ia(:),ja(:) !will be ia(n+1), ja(m)
real (8), pointer::a(:) !will be a(m)
end type

```

\section*{Accessing structures}

Structures can be accessed within the application program using the "\%" symbol. This is useful, e.g., when using Fortran 77 programs. The example below shows how to use a determinant program written in F77.
```

type (densem):: z
integer::i,j
real (rh)::value
call init(z)
call zerom(x,2)
! initialize z
do i=1,2
do j=1,2
value=i**j/10.
call addm(value, i,j,z)
enddo
enddo

```
```

print*, det(z%n,z%x)
end
function det(n,x)
!calculate determinant for a 2x2 matrix
integer n
real (r8):: x(n,n),det !
det=x(1,1)*x(2,2)/x(1,2)/x(2,1)
end

```

\section*{Library}

The following files are compiled into the library:
kind.f90 - definitions of precisions
sparse.f90 - type definitions + main subroutines,
sparse2.f - supporting subroutines (in f77),
fspak.f90 - f90 interface to fspak
fspak.f - main fspak subroutine (in f77),
fspaksub.f - supporting fspak subroutines (in f77),
sparssub.f - low-level subroutines from the book of George and Liu (in f77),
second.f - timing subroutine specific to each computer (in f77).

Subroutines second() specific to other computers can be found in the FSPAK manual.

\section*{Appendix S2}

\section*{Multiplication and solving using factors}

Let \(A\) be a matrix. Factorization produced by FSPAK is L:
\[
A=P^{\prime} L L^{\prime} P
\]
where \(P\) is a reordering matrix chosen to minimize the size of \(L\) :
\[
P P^{\prime}=P^{\prime} P=1
\]

Operation "fact_mult" multiplies the factor by a vector: \(y=P^{\prime} L P x\)
Operation " inv_fact_mult" solves the system of equation:
\[
P^{\prime} L^{\prime} P y=x
\]

This is equivalent to:
\[
y=P^{\prime}\left(L^{\prime-1}\right) P x
\]

Both operations were programmed by Juan Pablo Sanchez. The operations are useful for generation of large random samples from a multivariate normal distribution. They may be useful in Gibbs sampler algorithms when setting up and factorization of the system of equations in each round are feasible.

\section*{Module Prob}

Probability routines for use in threshold models and Gibbs sampling

Written by: Ignacy Misztal and Deukhwan Lee, University of Georgia e-mail: ignacy@uga.edu, 04/29/99-04/19/2001

Module Prob is a collection of random number generators / probabilities / truncated distributions useful for Gibbs sampling and for threshold models. The module uses features of Fortran 90 to simplify programnming and high-level optimization to reduce running time, with simplicity being as important as efficiency. To understand the module fully, please read the documentation on SPARSEM and on BLUPF90.

Module prob uses high-quality generators from public domain package RANLIB for random number generators. Some low level code is from Luis Varona.

\section*{Subroutines/functions}
call set_seed(n)
Sets seed for random number generator to integer \(n\). If this subroutine is not called, the seed will be selected by the system.
```

x=gen_uniform(a,b)

```
\(a, b\) - both real \(\left(r^{*}\right)\) or both integers or both missing.
If \(a, b\) are missing, generates samples from uniform \((0,1)\) distribution
If \(a, b\) are real ( \(r 8\) ), generates samples from uniform \((a, b)\) distribution
If \(a, b\) are integers, generates random integer between \(a\) and \(b\)
```

x=gen_normal (mean,var)

```
mean - (r8) scalar or vector
var - (r8) scalar or square matrix
\(x\) - (r8) scalar or square matrix
Generates \(x=N(\) mean,Var) when mean and var are scalars, or \(x=M V N(m e a n, V a r)\) when mean is a vector and Var is a matrix. Arguments mean and var are optional. If they are missing, sampling is from \(N(0,1)\)
x=gen_invwishart(inv_q_form,df)
inv_q_form - (r8) scalar or square matrix containing inverse of quadratic form
df - an integer containing degrees of freedom
Generates samples from inverted chi square or inverted Wishart distributions.
```

y=normal (x)
x - real(r8) scalar
y - real (r8) contains density(X) for N(0,1)

```
\(y=n o r m a l \_c d f(x)\)
\(x\) - real (r8) scalar
\(y\) - real (r8) cumulative distribution function for \(N(0,1)\)
\(y=n o r m a l \_i n v c d f(x)\)
\(x\) - real (r8) scalar in the range of \(<0,1>\)
\(y\) - real (r8) as in: x=normal_cdf(y)
\(y=g e n e r a t e \_t r u n c \_n o r m a l(a, b, m e a n\), var \()\)
\(y\) - real (r8) scalar or vector
\(a, b-r e a l(r 8)\) lower and upper bound of random samples
mean - real(r8) scalar or vectors of mean, optional if scalar
var - real(r8) variance or covariance matrix, optional if scalar

If mean and var are missing, generates random samples from \(N(0,1)\) distribution truncated to interval <a,b>.

If mean and var are scalars, generates random samples from \(N\) (mean,var) distribution truncated to interval <a,b>.
If mean is a vector and var is a matrix, generates random samples from MVN(mean,var) distribution with first dimension truncated to interval <a,b>.

\section*{Other functions/subroutines}

New functions/subroutines are added to Module prob periodically. Please see program prob.f90 for details.```


[^0]:    Statistics for SNP file

[^1]:    Variance component estimation by AIREMLF90

