

Quality Control of SNP data with preGSf90 and qcf90

BLUPF90 TEAM, 05/2022

Quality control

Call rate

Which software in the BLUPF90 family?

- Animals
- SNP
- Minor Allele Frequency (MAF)
- Hardy-Weinberg Equilibrium (HWE)
- Non-mapped SNP
- Mendelian Conflicts
- Duplicate genotypes
- Linkage disequilibrium (LD)

 Interface program to the genomic module to process the genomic information in the BLUPF90 family of programs

• Performs Quality Control of SNP information

- Creates the genomic relationship matrix
 - and relationships based on pedigree
 - Inverse of relationship matrices

- Same parameter file as for all BLUPF90 programs
- Needs an extra OPTION in renf90.par
 OPTION SNP file marker.geno
- Reads 2 extra files (besides data and pedigree):
 - marker.geno
 - marker.geno_XrefID(created by renumf90)

_XrefID has 2 columns: Renumbered ID Original ID

Run renumf90 before preGSf90

• Use renumf90 for renumbering data and creating XrefID and files

EFFECT 1 cross alpha RANDOM animal FILE ped3.txt FILE POS 12300 SNP FILE marker.geno PED DEPTH 0 (CO) VARIANCES 0.30

Parameter files

RENUMF90	BLUPF90
renum.par	renf90.par
DATAFILE phenotypes.txt TRAITS 3 FIELDS_PASSED TO OUTPUT WEIGHT(S)	DATAFILE renf90.dat NUMBER_OF_TRAITS 1 NUMBER_OF_EFFECTS 2 OBSERVATION(S) 1 WEIGHT(S)
RESIDUAL_VARIANCE 0.9038 EFFECT 1 cross alpha # mu EFFECT 2 cross alpha # animal RANDOM animal FILE pedigree SNP_FILE marker.geno (CO)VARIANCES 0.9951E-01	EFFECTS: POSITIONS_IN_DATAFILE NUMBE 2 1 cross 3 15800 cross RANDOM_RESIDUAL VALUES 0.90380 RANDOM_GROUP 2 RANDOM_TYPE add_animal FILE renadd02.ped (CO)VARIANCES 0.99510E-01 OPTION SNP_file marker.geno

New pedigree file from RENUMF90

- 1 renumbered animal ID
- 2 parent 1 number or UPG
- 3 parent 2 number or UPG
- 4 3 minus number of known parents
- 5 known or estimated year of birth
- 6 number of known parents
 if animal is genotyped 10 + number of known parents
- 7 number of records
- 8 number of progenies as parent 1
- 9 number of progenies as parent 2
- 10 original animal ID

SNP file, XrefID, and ped from renumf90

- Same parameter file as for all BLUPF90 programs
- Needs an extra OPTION in renf90.par
 OPTION SNP file marker.geno
- Reads 2 extra files (besides data and pedigree):
 - marker.geno
 - marker.geno_XrefID(created by renumf90)

_XrefID has 2 columns: Renumbered ID Original ID

Output Files from preGSf90

- freqdata.count
 - Contains the calculated allele frequency before QC
- freqdata.count.after.clean
 - Contains allele frequencies as used in calculations, removal code
 - AF will be zero for removed SNP
- Gen_call_rate
 - List of animals removed by low call rate
- Gen_conflicts
 - Report of animals with Mendelian conflicts
- GimA22i
 - Stores the content of the $G^{-1} A_{22}^{-1}$
 - Only if preGSf90 is used, not in other programs

Quality control default exclusion

- MAF
 - SNP with MAF < 0.05</p>

- Call rate
 - SNP with call rate < 0.90</p>
 - Individuals with call rate < 0.90

- Monomorphic
 - Excludes monomorphic SNP

Quality control default exclusion

- Parent-progeny conflicts (SNP & Individuals)
 - Exclusion -> opposite homozygous
 - For SNP: Number of parent-progeny exclusion from the total of pairs evaluated (>10 %)
 - For Individuals: Number of parent-progeny exclusions as percentage of all SNP (> 1%)

Parent-progeny conflicts

- Presence of these conflicts results in a negative **H**
- Problems in estimation of variance components by REML, programs may not converge, etc.
- Solution:
 - Report all conflicts, with counts for each individual as parent or progeny to trace the conflicts
 - Remove progeny genotype
 - maybe not the best option (problem may be in the pedigree)
 - But results in a positive-definite **H**

Parent-progeny conflicts

- OPTION verify_parentage x
 - 0: no action
 - 1: only detect
 - 2: detect and search for an alternate parent; no change to any file. Not implemented
 - implemented in seekparentf90 program
 - 3: detect and eliminate progeny with conflicts (default)

Control default values

- For MAF
 - OPTION minfreq x
- Call rate
 - OPTION callrate x
 - OPTION callrateAnim x
- Mendelian conflicts
 - OPTION exclusion_threshold_snp x
 - OPTION exclusion_threshold x

Other Options

- Departure of heterozygous from Hardy-Weinberg Equilibrium OPTION hwe x
- Exclusion of selected chromosomes: OPTION excludeCHR n1 n2 n3...
- Inclusion of selected chromosomes: OPTION includeCHR *n1 n2 n3...*
- Exclude samples from analyses OPTION excludeSample *n1 n2 n3...*
- Inform which are sex chromosomes: OPTION sex chr n
 - Chromosome >= n will be excluded only for HWE and parent-progeny checks, but not for calculations

Heritability of gene content

OPTION h2_gene_content

It checks that the heritability of gene content is equal or close to 1 as described in Forneris et al. Genetics 199.3 (2015): 675-681. Markers with estimated h2<0.98 **and** significant p-values of the LRT (p<0.01) are discarded. In addition, heritability and status of each marker are written in file h2_gc_test.

The test is useful for homogenous populations (breeds) but theory does not hold for crossbred animals. This test uses explicitly inv(A22) so it is not suitable for very large populations.

LD calculation and options

OPTION calculate_LD

Calculate LD as the squared correlation of allele counts for two SNP

Results are stored in "Id_results", columns: snp_i, chr_i, pos_i, freq_i, snp_j, chr_j, pos_j, freq_j, dist_ij, Rsq_ij

OPTION LD_by_chr

Calculate LD within chromosome

OPTION LD_by_pos x

Calculate LD within chromosome and windows of SNP based on position optional parameter x define with windows size in Bp, default value 200000

OPTION filter_by_LD x

Filter SNP with Rsq > threshold. Optional parameter x define the threshold. default value 0.8

OPTION thr_output_LD x

Threshold to print out Rsq between pair of SNP Optional parameter x define the threshold. default value 0.1

SNP map file – new default

- OPTION chrinfo <*file>*
- OPTION map_info <file>

– For GWAS and QC

- Format:
 - No defined position if a header is provided
 - Names for SNP, chromosome, and physical position are mandatory
 NUM CHR POS SNPID NUM2 31428 14 7928189 ARS-BFGL-BAC-1020 2
 - SNPID for SNP
 - CHR for chromosome
 - POS for position

NUM CHR	POS	SNPID	NUM2	
31428 14	1 7928189	ARS-BFGL-	BAC-1020 2	
32005 14	4 31819743	ARS-BFGL	-BAC-10245	3
31371 14	4 6133529	ARS-BFGL-	BAC-10345 4	1
31679 14	17544926	ARS-BFGL	-BAC-10591	7
32053 14	1 34639444	ARS-BFGL	-BAC-10867	8
31993 14	1 31267746	ARS-BFGL	-BAC-10919	9
23506 10	18882288	ARS-BFGL	-BAC-10952	10
23550 10	20609250	ARS-BFGL	-BAC-10960	11
23566 10	21225382	ARS-BFGL	-BAC-10975	12
23612 10	26527257	ARS-BFGL	-BAC-10986	13
24705 10	78512500	ARS-BFGL	-BAC-10993	14
24712 10	79252023	ARS-BFGL	-BAC-11000	15
24732 10	80410977	ARS-BFGL	-BAC-11003	16
24741 10	80783719	ARS-BFGL	-BAC-11007	17
24827 10	84516867	ARS-BFGL	-BAC-11025	18
25865 11	L 21276136	ARS-BFGL	-BAC-11039	21

Saving 'clean' files

- SNP excluded from QC are set as missing (i.e. Code=5)
 - 5 is replaced by 0 in calculations
- OPTION saveCleanSNPs
- Save clean genotype data without excluded SNP and individuals
 - For example for a SNP_file named marker.geno
 - Clean fles will be:
 - *marker.geno*_clean
 - marker.geno_clean_XrefID
 - Removed SNP/animals will be output in files:
 - marker.geno_SNPs_removed
 - *marker.geno*_Animals_removed

Only QC in preGSf90

- Quality control
- Genomic relationship matrices and inverses

 Inverse is costly
- How to do only QC avoiding the inverses:
 - OPTION SNP_file marker.geno
 - OPTION saveCleanSNPs
 - OPTION createGInverse 0
 - OPTION createA22Inverse 0
 - OPTION createGimA22i 0

No QC in application programs

- ONLY use:
 - If QC was performed in a previous run
 - and "clean" genotype file is used
- OPTION SNP_file marker.geno_clean
- OPTION no_quality_control

Use in application programs

- Use renumf90 for renumbering and creation of XrefID and files
 - SNP_FILE marker.geno SNP_FILE ped3.txt FILE_pos 1 2 3 0 0 SNP_FILE marker.geno PED_DEPTH 0 (CO) VARIANCES 0.30
- Run preGSf90 with quality control, saving clean files
- Run further programs with clean files as needed
 - blupf90+, gibbs2f90+, ...

PreGSf90 wiki

It is also run automatically by application programs like BLUPF90, REMLF90, GIBBSxF90 or BLUP90IOD when their parameter file contains OPTION SNP file filename.

Yutaka Masuda

- Quality control tool for large genomic data
 - What is an efficient way to detect genomically identical animals?
 - It implies we should compare all pairs of genotyped animals
 - Checks for human error or identical twins before GS
- Huge data and slow operations
 - More than 5 million genotyped Holsteins!
 - 80K SNPs x [5M x 5M] / 2 ~ 1×10^{18} comparisons needed
- The other checks are also needed...
 - Call rate, low MAF, Mendelian conflicts, etc.

• Four states for a biallelic SNP

Genotype	Character	ASCII (8bits)	Re-coded (2bits)
Homozygote (AA)	"0"	00110000	01
Heterozygote (Aa)	"1"	00110001	11
Another Homozygote (aa)	"2"	00110010	10
Missing	"5"	00110101	00

- Task: read and keep 5M genotypes in memory
 - Regular format: 3 TB RAM
 - Efficient format (packed): 93 GB RAM

- Logical manipulation of bit pattern
 - Fortran has functions for bitwise operations
 - Logical manipulation on bit pattern

Typical operations:

	1100		1100		1100		
AND	1010	OR	1010	XOR	1010	NOT	1010
	1000		1110		0110		0101

- Population count: the number of 1's popent(0000) is 0

- popcnt(0010) is 1
- popcnt(1010) is 2

- qcf90 supports raw files
 - No need to run renumf90 before
- qcf90 was designed for QC
 - preGSf90 was designed for QC and constructing **G** and **A**₂₂
- qcf90 --snpfile snpdata.txt --pedfile pedigree.txt
 - No parameter file but same output as preGSf90

- qcf90 --help or qcf90 --long-help
 - For all the options

• Benchmark test:

Memory usage

- Holstein genotypes: 569,404
- Number of SNP markers: 60,671
- Number of Pedigree animals: 10,710,380

Step	QCF90 (sec.)	PREGSF90 (sec.)
Reading a SNP file	420	1407
MAF and call rate	150	245
HWE test	84	24
Call rate for animals	3	307
Mendelian tests for SNP	62	316
Mendelian tests for animals	62	248
Recalculation of MAF	136	161
Total	917	2708

9 GB

Yutaka Masuda

257 GB

3x faster

28x less memory

pipeline

qcf90

• Use statement to save clean files: --save-clean

renumf90

• Use clean SNP and map (if present) files

blupf90+ or other application program

- Use clean SNP and map (if present) files
- Use renumbered files from renumf90