Single-step GBLUP using APY inverse for protein yield in US Holstein with a large number of genotyped animals

Yutaka Masuda, Ignacy Misztal, Paul VanRaden, and Tom Lawlor

University of Georgia, USDA AGIL, and Holstein Association USA Inc.

Acknowledgement

- U.S. Department of Agriculture's National Institute of Food and Agriculture (Agriculture and Food Research Initiative competitive grant 2015-67015-22936)
- George Wiggans, Melvin Tooker, and John Cole (Animal Genomics and Improvement Laboratory)
- Council on Dairy Cattle Breeding

Background

- Desirable features in single-step GBLUP (ssGBLUP)
 - Simplicity, avoidance of double counting, and accountability of pre-selection bias
- Breakthroughs in computing difficulties
 - Simple G^{-1} with the "APY" algorithm (G_{APY}^{-1})
 - Avoidance of direct computation of A_{22}^{-1}
- Large-scale application
 - How does it work for production traits for Holsteins?
 - How do we improve the reliability & bias in genomic predictions?

Objectives

- To validate genomic predictions for young Holstein bulls
 - 305-d protein yield
 - Single-step GBLUP with \mathbf{G}_{APY}^{-1}
 - Comparison with the official GPTA from a multi-step method
- To show some key factors for the greater reliability & less bias in ssGBLUP
 - Limitation of genotyped animals
 - Number of "core" animals
 - Incorporation of QTL effects

Full data

	Description	Number of records/animals
Phenotype	Protein yield (305-d basis) for US Holstein cows recorded between Jan. 1990 and Apr. 2015	37,259,427
	Cows with phenotype(s)	15,891,366
Pedigree	Animals born in Apr. 2015 or earlier (3-gen. back from phenotyped cows)	22,963,255
Genotype	Animals born in Apr. 2015 or earlier	764,029
	SNP loci	60,671

Validation study

Validation Bulls: Genotyped young bulls with no tested daughters in 2011 but with at least 50 tested daughters in 2015 (N=3,797)

- $DYD2015 = b_1 \times GPTA2011 + b_0$
- R² value: validation reliability
- Slope (b_1) : Bias of prediction

Model

- Single-trait repeatability model
 - Similar to the official model ($h^2=0.20$ and rep.=0.55)
- Single-step GBLUP

•
$$A^{-1}$$
 replaced with $H^{-1} = A^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & G_{APY}^{-1} + \omega A_{22}^{-1} \end{bmatrix}$

• "Core" and "noncore" animals in G_{APY}^{-1} :

$$\mathbf{G}_{APY}^{-1} = \begin{bmatrix} \mathbf{G}_{cc}^{-1} & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} -\mathbf{G}_{cc}^{-1}\mathbf{G}_{cn} \\ \mathbf{I} \end{bmatrix} \mathbf{M}^{-1} [-\mathbf{G}_{cn}'\mathbf{G}_{cc}^{-1} \quad \mathbf{I}]$$

 \mathbf{M}^{-1} : diagonal matrix

Genotyped animals

	Description	# of genotyped animals	# of core animals
All (Core 20K)	All available genotypes	764,029	20,000¶
All (Core 13K)	All available genotypes	764,029	12,913*
Higher-density	Animals with more than 38K SNP markers with known parents	149,941	12,882*
Bullsonly	All genotyped bulls	139,057	12,895*

[¶] Bulls* + their dams + random cows with phenotypes

^{*} Bulls born before 2011; with at least 1 tested daughter before 2011

Results

Prediction	Method	Genotypes	Core	R ²	b1 slope
Official PTA	BLUP	NA	NA	0.27	0.71
Official GPTA*	BayesA-type	Reference(>20K)	NA	0.51	0.81
Single-step	ssGBLUP	AII (760K)	Bulls+Cows (20K)	0.45	1.06
		AII (760K)	Bulls (13K)	0.46	0.97
		HigherD (150K)	Bulls (13K)	0.49	0.97
		Bulls (140K)	Bulls (13K)	0.50	0.98

^{*} Included internationally-evaluated foreign bulls without daughters in the US.

Genotyped animals

https://www.cdcb.us/Genotype/cur_density.html

Results

Prediction	Method	Genotypes	Core	R ²	b1 slope
Official PTA	BLUP	NA	NA	0.27	0.71
Official GPTA*	BayesA-type	Reference(>20K)	NA	0.51	0.81
Single-step	ssGBLUP	AII (760K)	Bulls+Cows (20K)	0.45	1.06
		AII (760K)	Bulls (13K)	0.46	0.97
		HigherD (150K)	Bulls (13K)	0.49	0.97
		Bulls (140K)	Bulls (13K)	0.50	0.98

^{*} Included internationally-evaluated foreign bulls without daughters in the US.

QTL effect of DGAT1

- A DGAT1 marker captured with commercial SNP panels
- Estimation of substitution effect (β)
 - Using 14,376 bulls with DYD reliability >= 72.5% (i.e. DE >= 50)
 - $DYD = \mu + \beta * GeneContent + u + e$
 - $\beta = 8.69 \, (\pm 0.51)$ for protein yield
- Blended GPTA
 - $GPTA^* = GPTA + 0.5\beta * GeneContent$

Results (Blended GPTA)

			GPTA		Blended GPTA	
Model	Genotypes	Core	R ²	b1	R ²	b1
Official PTA	NA		0.27	0.71		
Official GPTA*	Reference(>20K)		0.51	0.81		
Single-step	AII (760K)	Bulls+Cows (20K)	0.45	1.06	0.47	1.00
	AII (760K)	Bulls (13K)	0.46	0.97	0.47	0.93
	HigherD (150K)	Bulls (13K)	0.49	0.97	0.51	0.91
	Bulls (140K)	Bulls (13K)	0.50	0.98	0.51	0.92

^{*} Included internationally-evaluated foreign bulls without daughters in the US.

Summary

- Single-step GBLUP provides GPTA with much less bias and similar accuracy compared to the official prediction.
- Extra genotyped animals don't improve the accuracy of prediction.
- More "core" animals don't contribute to better prediction.
- Inclusion of major gene effect can slightly contribute to R² with little inflation in GPTA.