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Animal Breeding and Climate Change

 Remarkable success of breeding

— Kg milk 1944-2007: 23% feed, 35% water, 37% CO2
(Capper et al., 2009)

— Broiler 1957-2001: grows 3 times faster using 33%
feed (Havenstein et al., 2003)

— > 50% gain via genetics (Shook, 2006; Havenstein et
al., 2003).

* Challenge of climate change
Do we need a special breeding for resilience?
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Selection as optimization

Domestication
Intensive selection

Gains for preferred traits
Correlated losses for other traits

Effect of losses reduced/eliminated by management

Very poor fitness of domesticated animals have when
released back into the wild (Frankham, 2008).
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Climate change

Greater variations
Hotter

Extensive literature on heat stress/tolerance
Heat tolerance as proxy for resilience
Can one select for heat tolerance?
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Challenge of heat stress

Perceived reduction of heat tolerance in hot areas

Little observable heat stress with DHI data (e.g., Wright
et al., 2015)

Mainstream selection in Holsteins in milder/colder
climates

Selection against heat tolerance?
— If so, can one select for heat tolerance?
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Assumption for heat stress model

Ravagnolo et
al., 2001

Production/Reproduction

Temperature humidity index (THI)
Breeding value: BV =a + {(THD)*v

a — regular breeding value v — heat-tolerance breeding value
f(THI) — function of temperature humidity index



Effect of THI on daily milk production
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Effect of THI on Non-return rate at 45 days
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Genetics results

* Heat stress begins at about 72F THI (22C at
100% humidity)

* Genetic variability for heat tolerance present
but not big

* Relationship between regular and heat
tolerance genetics antagonistic at ~-0.4



Heat stress across USA

Variation 1n heat tolerance across USA

Genetic evaluation for heat stress with
national data

= Do colder regions contribute information about
heat stress?

" Profile of heat tolerant bull

» Can one identify heat-tolerant sires?
€
K Sde

What are they?

AT

Bohmanova et al. (2005 and 2006)



Differences between most 100 and least
100 heat tolerant sires

Milk
Fat%
Pro%

Dairy Form
Udder

Longevity
Fertility

Index

-1100kg
+0.2%
+0.1%

14 e Selection for fluid milk
I detrimental to heat stress
+0.7

* Low accuracy of active
+0.90 sires for heat stress
+1.6
+36



Heat stress 1n later parities (Aguilar
et al., 2009)

US test days
3-trait RR and RPT models

Heat stress effect

Estimation of parameters

National evaluation



Variances for three-parity test-day repeatability
model

Milk Fat (kg*100) Protein (kg*100)
2 3 1 2 3 1 2 3
7.5 6.5 74 94 109 43 57 52.2

37 75 142 22 48 108

-0.46 -0.38 -0.47 -0.39 -0.39 -0.30 -0.43 -0.36 -0.50

Genetic variance for heat stress increases up to 5 times
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Genetic trends of daily milk yield for

3 parities — regular effect
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Genetic trends for heat stress effect
at 5.5° C over the threshold
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 Improvement higher than deterioration

« Test days capture fraction»of-heat stress information
(Freitas et al., 2005)
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Mortality and 305-d Milk
Yield
of Holstein Cows
in Three Regions in US

K. Tokuhisa*, S. Tsuruta, and I. Misztal

University of Georgia, Athens
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Mortality in SouthEast

Tokuhisa et al. (2011)
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Is cost of heat stress higher than it
seems?

Low survival in SouthEast from parity to parity
Due to increasing heat stress with parities?
Selection for survival but not for mortality
Available data only from better farms
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) Parity 1 Small effect for milk

Boonkum et al., 2011
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Mokhtar et al, 2012









Profile of a “heat-tolerant

COW” /
* Reduces production

// when dangerous?
Rectal temperature  Reduces production
early to maintain
reproduction

e What is a heat tolerant cow?
 Milk as long as
possible?

THI

Heat production

Milk

/

 Thresholds management
specific
* Match genotype to

Fertility
\\ environment
Mortalit MM/
Y/ ADS4 Reili posium 2016 Partially based on Dikmen et al. (2012)

Morbidity




Genetics of growth in pigs under different
heat loads (zumbach et al., 2007)

* Pigsin NC or TX exposed to heat
stress

* Heat stress affect growth

e How to model heat stress for
growth?

ADSA Resilience Symposium 2016



Theoretical and realized heat loads
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Variances during cold and hot periods

Genetic

Litter

Error

h2

rhot,cold

Hot
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0.28

0.42

Cold
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66

0.14
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Heat stress in purebred and
crossbred pigs

Fragomeni et al., 2016)
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Beef

* Annual economic losses from heat stress (St-
Pierre et al., 2003)

— S87 million for beef cows
— $282 million for finishing cattle

* Limited quantifiable heat stress for Angus in
US (Bradford et al., 2016)

— Adaptation of beef industry for local condition
* Timing of breeding

* CrossbigRiNeesilience Symposium 2016




WW Direct Genetic Trend for

Angus in Southeast
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Is beef resilient

* Research by Don Spiers (Missouri)
— 3 days in heat chamber without water

— Removing hair by torches
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QTL for heat stress

Slick hair gene (Olsen et al., 2010)
Gene for spring shedding in beef?

Markers for rectal temperature (Dikmen et al., 2013)
— Max 0.44% for 1 Mbase region

Studies in AZ (Collier et al., 2012)
— 500 SNP from microarray studies
— 500 SNP from GWAS
— 5in common
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ssGBLUP for Heat Stress in
Holsteins (aguilar, 2011)

* Multiple-Trait Test-Day model, heat stress

as random regressmn

* ~ 90 millions records, ~ 9 millions pedigrees
« ~ 3,800 genotyped bulls

Reégular effect -firstparity ~ | Heat stress effect — first parity
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Example — Intensive selection for
growth in broiler chicken

» Unlimited appetite / obesity =» artificial lightning

 Different maturity rate of males and females =
separation of sexes

« Poor survival of males =» male supplementation
* Increased susceptibility to diseases = antibiotics

* Low hatchability = alternate heating/cooling of
iIncubators

Selection for main traits with improved management
for secondary traits
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Resilience and management intensity

A

Resilience

Chicken

Management intensity

Energy distribution
Pigs and selection for RFI (Dekkers, 2015)
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Heat tolerant lines?

Needs several generations of selection
Market for heat tolerant animals small
Improved management simpler

Selection and production environments
Interbull and dairy cattle
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Conclusions

Selection as optimization —winner and
loser traits

Management compensates for “losers”
— Capabilities different by species

Optimal management for each
environment

Current selection OK if selection and
production environments similar
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