Indirect predictions based on SNP effects from ssGBLUP in large genotyped populations

Daniela Lourenco
A. Legarra, S. Tsuruta, Y. Masuda, T. Lawlor, I. Misztal

ADSA 2018
Why Indirect predictions (IP)?

- Interim evaluations
 - Between official runs

- Not all genotyped animals are in the evaluations
 - Animals with incomplete pedigree increase bias and lower R^2

- Commercial products
 - e.g. GeneMax for non-registered animals
Indirect predictions in ssGBLUP

\[
\begin{bmatrix}
X'X & X'W \\
W'X & W'W + H^{-1}\lambda
\end{bmatrix}
\begin{bmatrix}
\hat{b} \\
\hat{u}
\end{bmatrix} =
\begin{bmatrix}
X'y \\
W'y
\end{bmatrix}
\]

\[
H^{-1} = A^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & G^{-1} - A_{22}^{-1} \end{bmatrix}
\]

\[
\hat{a} = \lambda D Z' G^{-1} \hat{u}
\]

GEBV_{young} = w_1PA + w_2GP - w_3PP

GEBV_{young} \approx GP

\text{COR(GEBV}_{young}, Z\hat{a}) > 0.99

GEBV_{young} \approx GP = Z\hat{a}

Lourenco et al., 2015
Problems with Indirect predictions

\[\text{COR}(\hat{\text{GEBV}}_{\text{young}}, \hat{Z}) > 0.99 \]

\[\text{Avg}(\hat{\text{GEBV}}) \approx 100 \quad \neq \quad \text{Avg}(\hat{Z}) \approx 0 \]
Objectives

1) Fine-tune indirect predictions to be compatible with GEBV

2) Investigate whether SNP effects are accurate when APY is used
 • Possibly use subset of core animals
Dataset

- US Holstein 2014 type data
 - 8.3M animals in pedigree
 - No UPG
 - 9.2M Udder Depth (UD)
 - \(h^2 = 0.33 \)
 - 9.2M Foot Angle (FA)
 - \(h^2 = 0.11 \)
 - 105k genotyped
 - Training: 100k
 - Validation: 5k
- Complete
 - Phenotypes up to 2010
 - Genotypes up to 2010 (105k)
- Reduced
 - Phenotypes up to 2010
 - NO Genotypes for validation (100k)
- SNP effects and IP from Reduced
 - Compare with GEBV from Complete
Accuracy of SNP effects

\[\hat{a}_G = \lambda D Z' G^{-1} \hat{u} \]

\[\hat{a}_{G_{APY}}^{-1} = \lambda D Z' G_{APY_high_reliability}^{-1} \hat{u}_{APY} \]

\[\hat{a}_{G_{APY}R}^{-1} = \lambda D Z' G_{APY_random}^{-1} \hat{u}_{APY} \]

\[\hat{a}_{G_{cc}}^{-1} = \lambda D Z' G_{cc_high_reliability}^{-1} \hat{u}_{APY} \]

\[\hat{a}_{G_{cc}R}^{-1} = \lambda D Z' G_{cc_random}^{-1} \hat{u}_{APY} \]
Statistics for SNP effects - G_{APY}^{-1}

Udder Depth

Foot Angle
Statistics for SNP effects - G_{CC}^{-1}

Udder Depth

Foot Angle
Statistics for $\mathbf{Z\hat{a}} - \mathbf{G}^{-1}_{CC}$

<table>
<thead>
<tr>
<th></th>
<th>G^{-1}</th>
<th>0.99</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{CC_High}</td>
<td>$G^{-1}_{CC_High}$</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>G_{CC_Rand}</td>
<td>$G^{-1}_{CC_Rand}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Udder Depth

Foot Angle
Fine-tuning indirect predictions from ssGBLUP

Understanding genetic and genomic bases

• Base of BLUP: *founders of the pedigree*

• Base of GBLUP: *genotyped* animals

• Base of SSGBLUP: Vitezica et al. (2011) modeled as a mean for genotyped

 • $p(u_g) = N(1\mu, G)$

 • $\mu = \text{(Pedigree base)} - \text{(Genomic base)}$
Fine-tuning indirect predictions from ssGBLUP

1) Formula in Legarra (2017)
\[
\hat{u}_{ip} = \hat{\mu} + 0.95 \hat{Z}\hat{a} + 0.05 \hat{u}_{parents}
\]

2) Double fitting
 a) fit a regression using genotyped animals in the evaluation
 \[
 \text{GEBV}_{eval} = b_0 + b_1 \hat{Z}\hat{a}
 \]
 b) apply regression for indirectly predicted animals
 \[
 \hat{u}_{ip} = b_0 + b_1 \hat{Z}\hat{a}
 \]

3) Add average GEBV
 \[
 \hat{u}_{ip} = \frac{\text{GEBV}_{eval}}{\hat{Z}\hat{a}}
 \]
Bias of indirect predictions

Udder Depth

Foot Angle
Correlation between GEBV and indirect predictions

Correlation(GEBV, u_p)

- Za: 0.98
- Legarra_2017: 0.98
- Double_Fitting: 0.98
- Average_GEBV: 0.98

FA: blue
UD: green
Fine-tuning indirect predictions in ssGBLUP

\[E(\hat{u}|\hat{a}) = \mu + Z \frac{1}{2 \sum p(1-p)} \left(I \frac{1}{2 \sum p(1-p)} \right)^{-1} (\hat{a} - 0) \]

\[E(\hat{u}|\hat{a}) = \mu + Z\hat{a} \]

\[\approx \]

\[E(\hat{u}|\hat{a}) = GEBV + Z\hat{a} \]
Final Remarks

• SNP effects can be calculated based on APY G^{-1} or core G^{-1}
 • Slightly less accurate with core

• Indirect predictions based on core animals are accurate
 • Reduction in computing time compared to G^{-1}
 • Similar computing time as APY G^{-1}

• Indirect predictions are unbiased after corrections
 • Average GEBV, Legarra (2017) or double fitting
 • Can be used as interim evaluation
Acknowledgements