Tuning indirect predictions based on SNP effects from ssGBLUP

Daniela Lourenco
A. Legarra, S. Tsuruta, D. Moser, S. Miller, I. Misztal

Interbull 2018
Why Indirect predictions?

• Interim evaluations
 • Between official runs

• Not all genotyped animals are in the evaluations
 • Animals with incomplete pedigree increase bias and lower R^2

• Commercial products
 • e.g. GeneMax for non-registered animals
Indirect predictions in ssGBLUP

\[\begin{bmatrix} X'X & X'W \\ W'X & W'W + H^{-1}\lambda \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X'y \\ W'y \end{bmatrix} \]

\[DGV = Z\hat{a} \]

\[\hat{a} = \lambda D Z'G^{-1} \hat{u} \]

\[G_{\text{APY}}^{-1} = A_{22}^{-1} + G^{-1} \]

\[G_{\text{EGBVs}}^{-1} = \frac{1}{\lambda} D G V = \frac{1}{\lambda} Z a \]

\[\text{GEBV}_{\text{young}} = w_1 PA + w_2 DGV - w_3 PP \]

\[\text{GEBV}_{\text{young}} \approx \text{DGV} = Z\hat{a} \]

Lourenco et al., 2015
Problems with Indirect predictions

\[\text{COR(GEBV, } \hat{Z}_a) > 0.99 \]

\[\text{Avg(GEBV)} \approx 100 \quad \Rightarrow \quad \text{Avg}(\hat{Z}_a) \approx 0 \]
Objectives

1) Fine-tune indirect predictions to be compatible with GEBV

2) Investigate whether SNP effects are accurate when APY is used
 • Possibly use subset of core animals
Dataset

- American Angus Association
 - 8.2M animals in pedigree
 - 6.2M birth weight (BW)
 - 6.8M weaning weight (WW)
 - 3.4M post-weaning gain (PWG)
 - 81k genotyped
 - born 1977-2012: 66k
 - born 2013-2014: 15k
- Complete
 - Phenotypes up to 2012
 - Genotypes up to 2014 (81k)
- Reduced
 - Phenotypes up to 2012
 - Genotypes up to 2012 (66k)
- 3-trait with mat and mpe
 - Results for PWG
Accuracy of SNP effects from G_{APY}^{-1} or G_{cc}^{-1}

$\hat{a}_G = \lambda D Z' G^{-1} \hat{u}$

$\hat{a}_{G_{APY}^{-1} H} = \lambda D Z' G_{APY_high_reliability}^{-1} \hat{u}_{APY}$

$\hat{a}_{G_{APY}^{-1} R} = \lambda D Z' G_{APY_random}^{-1} \hat{u}_{APY}$

$\hat{a}_{G_{cc}^{-1} H} = \lambda D Z' G_{cc_high_reliability}^{-1} \hat{u}_{APY}$

$\hat{a}_{G_{cc}^{-1} R} = \lambda D Z' G_{cc_random}^{-1} \hat{u}_{APY}$

- Correlation between SNP effects
- Correlation between $Z\hat{a}$
Statistics for SNP effects

\[G^{-1} \quad >0.99 \quad >0.99 \]

\[G_{\text{APY}_{\text{High}}}^{-1} \quad >0.99 \]

\[G_{\text{APY}_{\text{Rand}}}^{-1} \]
Statistics for SNP effects

\[
\begin{align*}
G^{-1} & \quad 0.93 & \quad 0.90 \\
G_{CC_High}^{-1} & \quad 0.90 \\
G_{CC_Rand}^{-1} & \\
\end{align*}
\]
Statistics for $Z\hat{a}$

G^{-1} 0.989 0.988

$G_{CC_High}^{-1}$ 0.987

$G_{CC_Rand}^{-1}$
Fine-tuning indirect predictions from ssGBLUP

Understanding genetic and genomic bases

• Base of BLUP: *founders of the pedigree*

• Base of GBLUP: *genotyped* animals

• Base of SSGBLUP: Vitezica et al. (2011) modeled as a mean in genotyped animals

 • \(p(u_g) = N(1\mu, G) \)

 • \(\mu = \text{(Pedigree base)} - \text{(Genomic base)} \)
Fine-tuning indirect predictions from ssGBLUP

1) Formula in Legarra (2017)
\[\hat{u}_{ip} = \hat{\mu} + 0.95\hat{Z}\hat{a} + 0.05 \hat{u}_{parents} \]

2) Double fitting
 a) fit a regression using genotyped animals in the evaluation
 \[\text{DGV}_{eval} = b_0 + b_1 Z\hat{a} \]
 b) apply regression for indirectly predicted animals
 \[\hat{u}_{ip} = b_0 + b_1 Z\hat{a} \]

3) Add average GEBV
 \[\hat{u}_{ip} = \overline{\text{GEBV}}_{eval} + Z\hat{a} \]
Bias of indirect predictions

GEBV – u_{ip}
Correlation & Regression Coefficient

Za
Legarra_2017
Double_Fit
Average_GEBV

Correlation(GEBV,u_{ip})

Regression of GEBV on u_{ip}

Fine-tuning indirect predictions in ssGBLUP

\[
E(\hat{u}|\hat{a}) = \mu + Z\frac{1}{2\sum p(1-p)}\left(I\frac{1}{2\sum p(1-p)}\right)^{-1}(\hat{a} - 0)
\]

\[
E(\hat{u}|\hat{a}) = \mu + Z\hat{a}
\approx
\]

\[
E(\hat{u}|\hat{a}) = \overline{GEBV} + Z\hat{a}
\]
Final Remarks

• Indirect predictions are unbiased after corrections
 • Can be used as interim evaluation

• Indirect predictions based on core animals are slightly less accurate
 • Reduction in computing time (no G_{nc}^{-1} and G_{nn}^{-1})

• SNP effects from ssGBLUP may be useful for SNP MACE
Acknowledgements