

Single-step genomic BLUP for national beef cattle evaluation in US:

from initial developments to final implementation

Daniela Lourenco

S. Tsuruta, B.O. Fragomeni, Y. Masuda, I. Aguilar

A. Legarra, S. Miller, D. Moser, I. Misztal

Angus

- Main beef cattle breed in USA
- Genomic Selection since 2009

Multistep Genomic Evaluation

Problems with Multistep

- Big fluctuations in GEBV for new calibration
- Rank change for bulls with high accuracy
- Overfitted models 2x the number of traits
- High genetic correlation between phenotype and MBV

Single-step genomic BLUP (ssGBLUP)

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

Aguilar et al., 2010

Initial tests of ssGBLUP for Angus

Number of Genotyped Animals

Ability to predict future performance

2014

- 8M animals in pedigree
- 6M BW and WW
- 3.4M PWG
- 52k genotyped animals
- 18.7k born in 2013

2017

- 10M animals in pedigree
- 8M BW and WW
- 4.2M PWG
- 335k genotyped animals
- 18.7k born in 2016

Predictive ability direct = COR(Y_adj, GEBV)

Predictive ability maternal = COR(Y_adj, total_maternal_GEBV)

Ability to predict future performance

USMARC comparisons of ssGBLUP x multistep

Kuehn et al., 2017

Genetic trends for carcass traits

Increasing number of genotyped animals

- Number of genotyped animals increased 5-fold from 2014 to 2018
 - 150,000
 - > 2 hours
 - > 700Gb RAM

 $\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}^{-1} \end{bmatrix}$

- APY ssGBLUP
 - Borrowed from algorithm to construct A⁻¹
 - Core and Non-core

$$\mathbf{G}_{\text{APY}}^{-1} = \begin{bmatrix} \mathbf{G}_{CC}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} + \begin{bmatrix} -\mathbf{G}_{CC}^{-1} \mathbf{G}_{Cn} \end{bmatrix} \mathbf{M}_{nn}^{-1} \begin{bmatrix} -\mathbf{G}_{nc} \mathbf{G}_{CC}^{-1} & \mathbf{I} \end{bmatrix} \qquad \mathbf{M}_{nn} = g_{ii} - g_{ic} G_{cc}^{-1} g_{ci}$$

APY ssGBLUP in 2014

APY ssGBLUP in 2014

PWG – Random Core

230 Gb

Regular inversion = 213 min

tegular inversio

How to choose the number of core in APY?

• Ne, Me, ESM, Eigen of G

Pocrnic et al., 2016 Misztal, 2016

Limited dimensionality

Additional features in ssGBLUP

- Commercial products
 - e.g. GeneMax for non-registered animals
 - Based on SNP effects
 - Accurate SNP effects with APY?

SNP effects in APY ssGBLUP

$$\widehat{a}_{\mathbf{G}} = \lambda \mathbf{D} \, \mathbf{Z}' \mathbf{G}^{-1} \widehat{u}$$

$$\widehat{a}_{\mathbf{G}_{APY}^{-1}} = \lambda \mathbf{D} \ \mathbf{Z}' \mathbf{G}_{APY}^{-1} \widehat{u}_{APY}$$

$$\widehat{a}_{\mathbf{G}_{cc}^{-1}} = \lambda \mathbf{D} \ \mathbf{Z}' \mathbf{G}_{cc}^{-1} \widehat{u}_{APY}$$

Additional features in ssGBLUP

- Interim evaluations
 - Indirect predictions
 - Quick evaluations between official runs
 - Should be comparable to GEBV

Indirect predictions for young animals

Problem with Indirect predictions

COR(GEBV,DGV) > 0.99

Lourenco et al., 2015

$$Avg(GEBV) \approx 100$$

$$Avg(DGV) \approx 0$$

Base of SSGBLUP: modelled as a mean in genotyped animals

•
$$p(\mathbf{u}_g) = N(\mathbf{1}\mu, \mathbf{G})$$

Vitezica et al. (2011)

• μ = (Pedigree base) – (Genomic base)

Correcting for bias of indirect predictions

1) Omega = 0.7 indicates inflation in GEBV

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} & \\ \mathbf{0} & \tau \mathbf{G}^{-1} - \omega \mathbf{A}_{22}^{-1} \end{bmatrix}$$
 Inbreeding Inbreeding

Solution: adding inbreeding for A^{-1} removed inflation in GEBV Omega = 1.0

2) Inclusion of external EBV into growth evaluation

- 10k Red Angus EBV
- External EBV + genomics was not supported

$$\mathbf{H}^{*-1} = \begin{bmatrix} \mathbf{H}^{\mathrm{EE}} + \mathbf{T}^{-1} - \mathbf{H}_{\mathrm{EE}}^{-1} & \mathbf{H}^{\mathrm{EI}} \\ \mathbf{H}^{\mathrm{IE}} & \mathbf{H}^{\mathrm{II}} \end{bmatrix}$$

- E = external
- I = internal
- T = PEV for E

3) Calving ease evaluation was not quite easy

- BW + CE in linear-threshold model
- BLUP = 12 hours
- 152k genotyped animals
- APY ssGBLUP = 4.5 days

Scenario	Description of parameters			rounds	hours	correlation with
	pcg rounds	alpha	beta	rounds	hours	genomic
traditional	40	-		60	12	-
genomic	40	0.9	0.1	488	108	-

4) Accuracy of GEBV

$$\begin{bmatrix} x'x & x'z \\ z'x & z'z+A^{-1}\lambda \end{bmatrix} \begin{bmatrix} b \\ u \end{bmatrix} = \begin{bmatrix} x'y \\ z'y \end{bmatrix}$$

 $Diag(C^{ZZ+}) = PEV \qquad \underline{\hspace{1cm}}$

- Large datasets
 - Impossible to invert

- d_i^r and d_i^p are approximated

 (Misztal and Wiggans, 1988)
- Accuracy = $1 LHS^{-1}$

$$LHS_{uu}^{ii} = \frac{1}{(\lambda + d_i^r + d_i^p)}$$

4) Accuracy of GEBV

$$\begin{cases}
\mathbf{Z}'\mathbf{Z} + \lambda \mathbf{A}^{-1} + \lambda \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix} \\
\downarrow & \downarrow \\
d_i^r & d_i^p
\end{cases}$$

$$LHS_{uu}^{ii} = \frac{1}{(\lambda + d_i^r + d_i^p + d_i^g)}$$

$$d_i^g = var_ratio *[\overline{Rel} + (1 - g_{ii}) + zeta * \overline{Rel - Rel_{PA}}]$$

4) Accuracy of GEBV

Cor = 0.87 Avg_True = 0.55 Avg_approx. = 0.50 MSE = 0.0035

Implementation of ssGBLUP on 7/7/2017

- Current Angus evaluation with ~ 450k
 - 19k core
 - Weekly evaluations
 - ~ 18 traits (maternal, categorical, external information)
 - Indirect predictions based on SNP effects $\widehat{a}_{\mathbf{G}_{cc}^{-1}} = \lambda \mathbf{D} \ \mathbf{Z}' \mathbf{G}_{cc}^{-1} \widehat{u}_{\mathrm{APY}}$

- Minimal changes for proven animals
- Considerable changes for young animals
- More variation among half- and full-sibs

Final Remarks

- ssGBLUP tests were extensive and took couple of years
 - More stable than multistep

- Implementation of ssGBLUP by Angus raised several issues
 - All solved
 - Successful weekly evaluations for 7 months
 - Evaluation with ~450k genotyped animals is possible with APY

 Implementation of ssGBLUP for Angus in 2017 set new standards for beef cattle evaluation in USA

Acknowledgements

