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Genomic	selection	and	single-step	

• Simplicity
– No	DYD	or	DP
– No	index	
– No	complexity

• Accuracy
– Avoids	double	counting
– Avoids	fixed	index
– Accounts	for	preselection bias
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Current	implementation	of	SS

• G	and	A22 created	explicitly	
• Quadratic	memory	and	cubic	computations
• Cost	per	100k	genotypes	- 1.5	hr (Aguilar	et	
al.,2014)
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Number	of	genotypes	and	impending	
problem

>	2	M	for	Holsteins
>	400k	for	Angus

Genomic	pre-selection	issue	(Patry and	Ducrocq,	
2011;	VanRaden et	al.,	2013)

– BLUP	increasingly	biased
– Need	all	data	on	preselection	included



Unsymmetric equations

Misztal	et	al.,	2009

No	convergence	without	good	preconditioner
No	convergence	with	large	H	or	A



No	G	or	A22 inverse	model

Legarra and	Ducrocq (2011)

Slow	convergence	with	few	genotypes
Divergence	with	many	genotypes



SNP	model	for	genotyped	animals

Legarra and	Ducrocq,	2011

No	successful	programming



SNP	model	for	genotyped	animals

Liu	et	al,	2014



SNP	effects	for	all	animals	
(Fernando	et	al.,	2014)

centered	
genotypes

imputed	
genotypes

Cost	of	imputation
Requires	new	type	of	programming
Extension	to	complex	models	unclear



Can	regular	ssGBLUP	be	made	more	
efficient?	



Scaling	up	A22
-1

𝐀𝟐𝟐#𝟏 = 𝐀𝟐𝟐 − 𝐀𝟐𝟏 𝐀𝟐𝟐
#𝟏
𝐀𝟏𝟐

• 𝐀𝟐𝟐#𝟏 dense	(Faux	et	al.,	2014)	

• For	PCG	iteration	(Stranden et	al.,	2014)

𝐀𝟐𝟐#𝟏𝐪 = 𝐀𝟐𝟐𝐪 − 𝐀𝟐𝟏 𝐀𝟐𝟐
#𝟏

𝐀𝟏𝟐𝐪	

• Seconds	for	500k	animals	with	good	
programming	(Masuda	et	al.,	2017)



Is	dimensionality	of	genomic	
information	limited?	

• Regular	G	not	positive	definite	past	~5k	
– Blending	with	A	(VanRaden,	2008)

• Dimensionality	of	SNP	BLUP	small	(Maciotta et	
al.,	2013)

• Success	of	imputation

• Manhattan	plots	noisy	until	averaged	by	300k-
10Mb	(depending	on	species)





…………

Heterogenetic	and	homogenic tracts	in	genome	(Stam,	1980)

E(#tracts)=4NeL	(Stam,	1980)
Ne	– effective	population	size
L	–length	of	genome	in	Morgans

Holsteins:	Ne	≈100	L=30	
Me=12,000



Inversion	via	SVD/eigenvalue	decomposition
Assume	1	million	animals	genotyped	with	60k	chip

𝐆 = 𝐙𝐙= = 𝐔𝐃𝐔= Eigenvalue decomposition (1M x 1M)

𝐆# = 𝐔𝐃#𝐔= Generalized inverse (1M x 1M)

Z = 𝐔𝐒𝐕 = 𝐔𝐃B.C𝐕 - SVD decomposition (1M x 60k)
10h for 720k animals (Masuda, 2017)

t - index for non-negligible eigenvalues, say 10k
𝐆# = 𝐔D 𝐃D#E𝐔D= = 𝐔D 𝐒F#E𝐒F#E𝐔D= = 𝐔∗ 𝐔∗

For PCG iteration
𝐆#E𝐪 = 𝐔∗ 𝐔∗ 𝐪 - only 1 M x 10k elements



Inverse	by	Woodbury	formula

𝐆 = 𝐙𝐙′ + 𝐈𝛆, Woodbury formula
𝐆#𝟏 = 𝟏

𝛆
𝐈 − 𝟏

𝛆
𝐙(𝟏

𝛆
𝐙′𝐙 + 𝐈)#𝟏𝐙′ 𝟏

𝛆
Z’Z 60k x 60k

For PCG iteration:

𝐆#𝟏𝐪 =
𝟏
𝛆 𝐈 − 𝐙(𝐔𝐃𝐔′)#𝟏𝐙′ 𝒒 =

𝟏
𝛆 𝐈 − 𝐒𝐒′ 𝒒

																																																																															𝐒 = 𝐙𝐔′𝐃#𝟏/𝟐

With reduced rank 𝐒 = 𝐙𝐔𝒕= 𝐃𝒕
#𝟏𝟐 (1M x 10k)

Ostersen et	al.,	2017

Mantysaari et	al.,	2017



If	G	has	limited	dimensionality,	can	G-1

be	sparse	like	A-1?



Use	of	a	la	Henderson’s	rules?

Use	of	relatives	for	G-1

Accuracies	not	good	enough
Theory	not	clear



Assumption	of	limited	dimensionality

= +u Ts e
Breeding	value

s – n	x	1	vector	containing	additive	information	of
population	(haplotypes,	chromosome	segments,	
LD	blocks)?

1    c c
-»s T uIf	uc contains	n	animals:

Very	small	error

Breeding	values	of	any	n	animals	contains	all	additive	information
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How	to	estimate	P and	inv(G)?
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G	is	“true”	relationship	matrix

APY	algorithm
(Algorithm	for	Proven	and	Young)



Properties	of	APY	algorithm

Cost:	
Almost	linear	memory	and	
computations

è

G G-1

G

è

APY	G-1

Cost:	
Quadratic	memory	and	cubic	
computations



EAAP	meeting	2016



Reliabilities	– Holsteins	(77k)

Final	score

regular	G-1

4.5k																									 8k																				14k	 19k					77k
NeL 2NeL									 4NeL

Pocrnic et	al.,	2016b



Distribution	of	segments/haplotypes/..

Assumed	dimensionality
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≈4NeL



Costs	with	720k	genotyped	animals

• 30	M	Holsteins
• 50	M	records
• 764k	60k	genotypes

Item BLUP ssGBLUP
APY G - 7	h
A22-1 - 10	min
rounds 402 464
Time/round 51	s 83	s
Total	time 6	h 17	h

Masuda	et	al.,	2017



Which core animals in APY?
Bradford	et	al.	(2017)

§ Simulated	populations	(QMSim;	Sargolzaei and	Schenkel,	
2009)

§ Ne	=	40
§ #genotyped	animals	=	50,000

§ Core	animals:
§ Random	gen	6		||			gen	7		||		gen8		||			gen9		||		gen	

10	(y)
§ Random	all	generations

27



Which core animals in APY?
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Bradford	et	al.	(2016)
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Persistence	over	generations

Generations

Re
lia
bi
lit
y

1.0

BLUP

GBLUP	– small	population

BayesB – small	population

GBLUP	– very	large	population

GBLUP	– very	large	population
90%	genome

Very	large	– equivalent	to	4NeL	animals	with	99%	accuracy
Are	SNP	effects	from	Holstein	national	populations	converging	



Theory	of	limited	dimensionality
Number	of	haplotypes:	4	Ne	L
Ne	within	each	¼	Morgan	segment

¼	Morgan

QTLsGenome	haplotypes	

Dimensionality	of	¼	Morgan	case:	Ne

Fragomeni et	al.,	2018

or	number	of	identified	QTLs
èReduced	dimensionality	with	weighted	GRM



ssGBLUP accuracies	using	SNP60K	and	
100	QTNs	– simulation	study

0 10 20 30 40 50 60 70 80 90 100

BLUP

ssGBLUP	- unweighted	SNP60k

unweighted	SNP60k	+	100	QTN

SNP60k	+	100	QTN	weighted	by	GWAS

SNP60K	+	100	QTN	with	"true"	variance

plus	by	APY

only	100	QTN	unweighted	by	APY

Fragomeni et	al.	(2017)
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Multitrait ssGBLUP or	SNP	selection?

• SNP	selection/weighting	(BayesB,	etc.)	
– Large	impact	with	few	genotypes
– Little	or	no	impact	with	many



Variance	components

• Based	on	SNP
– limitations

• REML	based	on	relationships
– Equations	no	longer	sparse
– YAMS	sparse	matrix	package	–up	to	100	times	
speedup	(Masuda	et	al.,	2017)

– APY	for	REML
• Method	R	(Legarra and	Reverter,	2017)



Extra	topics

• Matching	pedigrees	and	genomic	relationships
• Missing	pedigrees
• Crossbreeding
• Causative	SNP

• Haplotypes	for	crossbreds	(Christensen	et	al.,	
2016)

• Metafounders (Legarra et	al.,	2016)
• Approximation	of	reliabilities	



Conclusions

• Limited	dimensionality	of	genomic	
information	due	to	limited	effective	
population	size

• ssGBLUP suitable	for	any	data	set	and	model

• With	large	data	sets	for	Holsteins:
– Good	persistence	of	predictions
– Convergence	of	predictions	from	different	
countries
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Theory	for	APY

• Breeding	values	of	core	animals	linear	
functions	of:
– Independent	chromosome	segments	(Me)
– Independent	effective	SNP

• E(Me)=4	Ne	L	(Stam,	1980;	VanRaden,	2008)
Ne	–effective	population	size
L	– length	of	genome	in	Morgans

Me	=		4	(Ne=100)	(L=30)		=12,000



QTL

Accuracy and distance from markers 
to QTL
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Fragomeni	et	al.	(2017)


