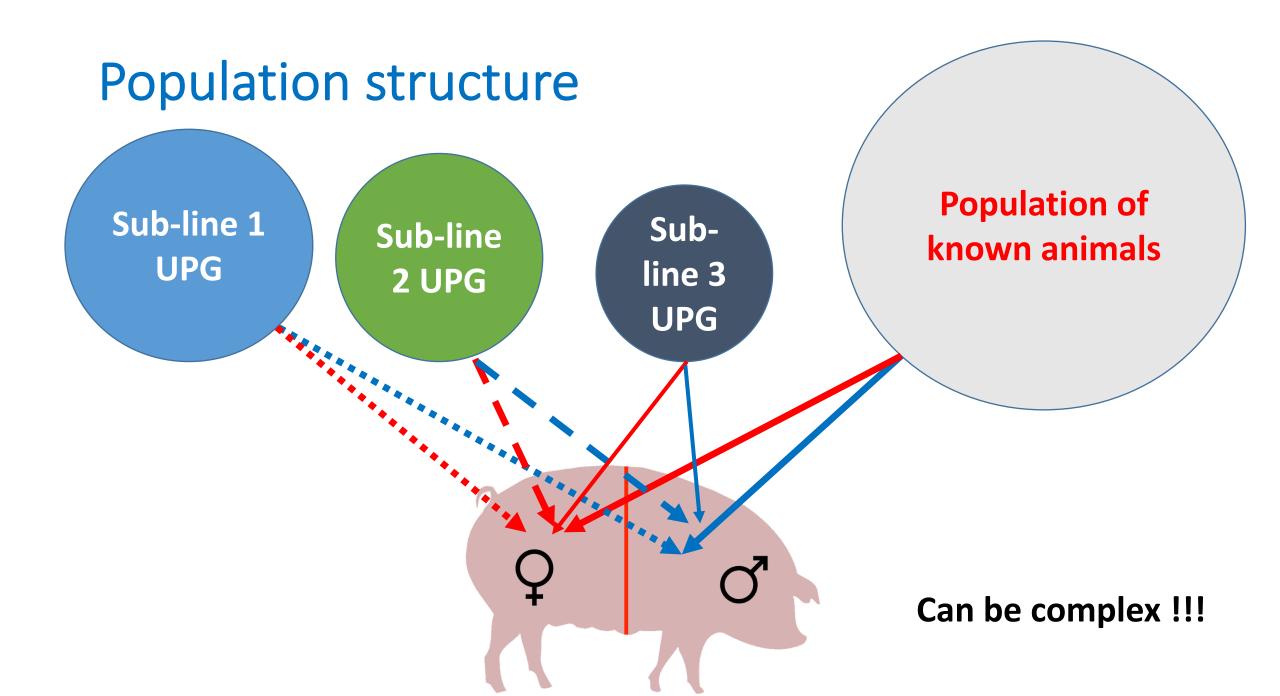
Practical problems and solutions using unknown parent groups in combined commercial pig sub-lines

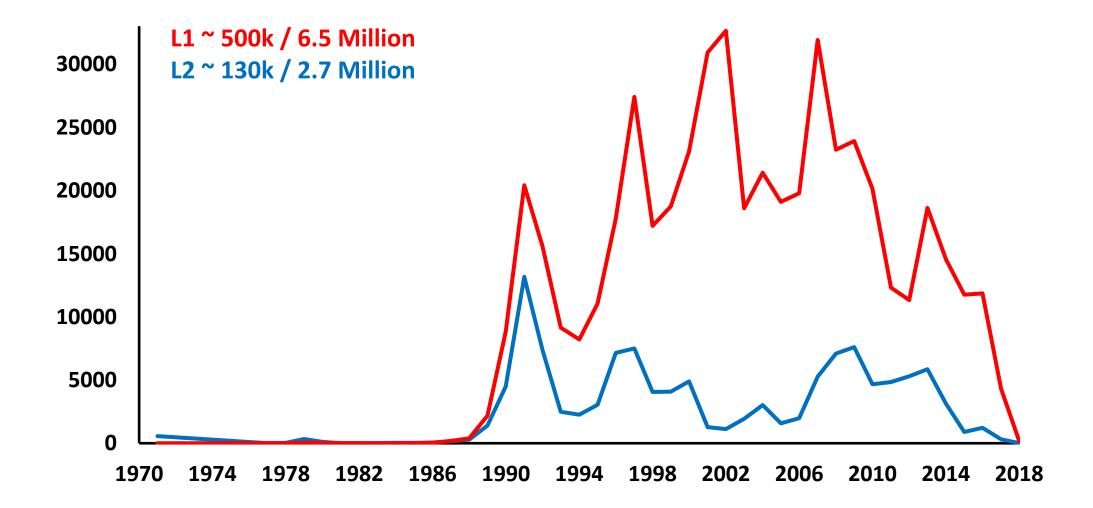
Ivan Pocrnić¹, D.A.L. Lourenco¹, S. Tsuruta¹, Y. Masuda¹, C.Y. Chen², I. Misztal¹



¹University of Georgia, USA ²Genus PIC, USA Vancouver, Canada, July 2018

Introduction

- Unknown parent groups (**UPG**) are commonly used when different lines are present in genetic evaluations (heterogeneous population)
- Combining several lines from the same breed is common in pig breeding
- Can cause some problems, e.g.:
 - Confounding with other fixed effects
 - Convergence issues
 - Potential bias
 - Poorly assigned groups and/or small groups


Data

• Line 1 (L1) – Case study I

- Three-trait model
- Moderate heritabilities
- Up to 586,827 records
- 6.5 M pedigree
- 43,448 SNP markers
- 41,361 genotyped animals

- Line 2 (L2) Case study II
 - Single-trait model
 - Low heritability
 - 655,156 records
 - 2.7 M pedigree
 - 41,563 SNP markers
 - 47,021 genotyped animals

Animals with UPGs per year of birth

Case study I: Line 1 problem

• Single-step GBLUP:
$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

$$\mathbf{G} = \alpha \mathbf{G}_0 + \beta \mathbf{A}_{22}$$

- Small changes to α & β caused instability of UPG and GEBV solutions
- <u>Potential source of problem</u>: weak connections between the sub-lines

Case study I: Instability of UPG solutions

• Example: UPG2 – UPG1

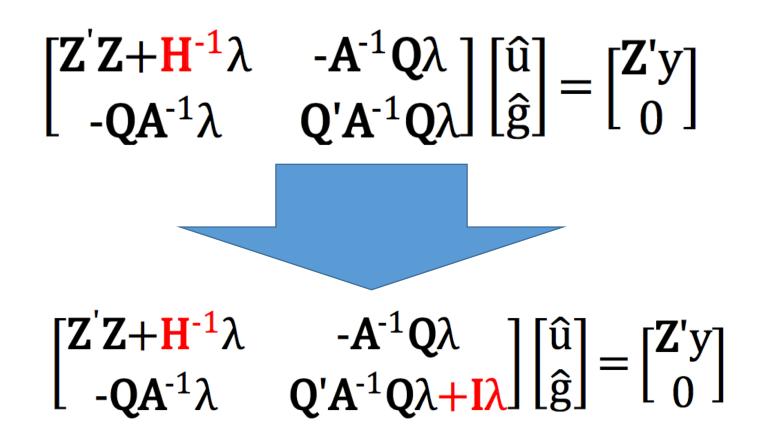
Alpha	TRAIT 1	TRAIT 2	TRAIT 3
0.95	10.5	-5.2	7.5
0.9	8.9	-4.9	6.9
0.8	9.4	-5.3	7.1

Case study I: Methods

• Traditional UPG model:

$$y = ... + ZQg + Za + e$$

• QP transformed UPG model: (Quaas & Pollak 1981)


$$y = \dots + \mathbf{Z}u + e$$
$$u = \mathbf{Q}g + a$$

- ... other fixed effects
- g fixed UPG effect
- a random animal effect
- e random residual
- **Z** connecting animals with records
- **Q** connecting animals with UPGs

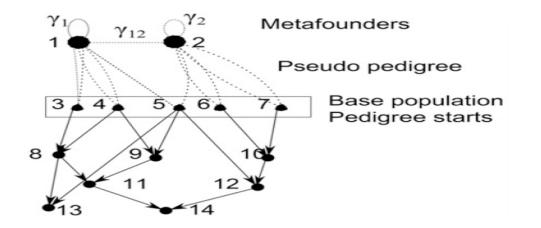
• Adding approximate UPG to ssGBLUP:

Case study I: Solutions

• Adding random UPG to ssGBLUP:

Case study I: Results using random UPG

• Example: UPG2 – UPG1

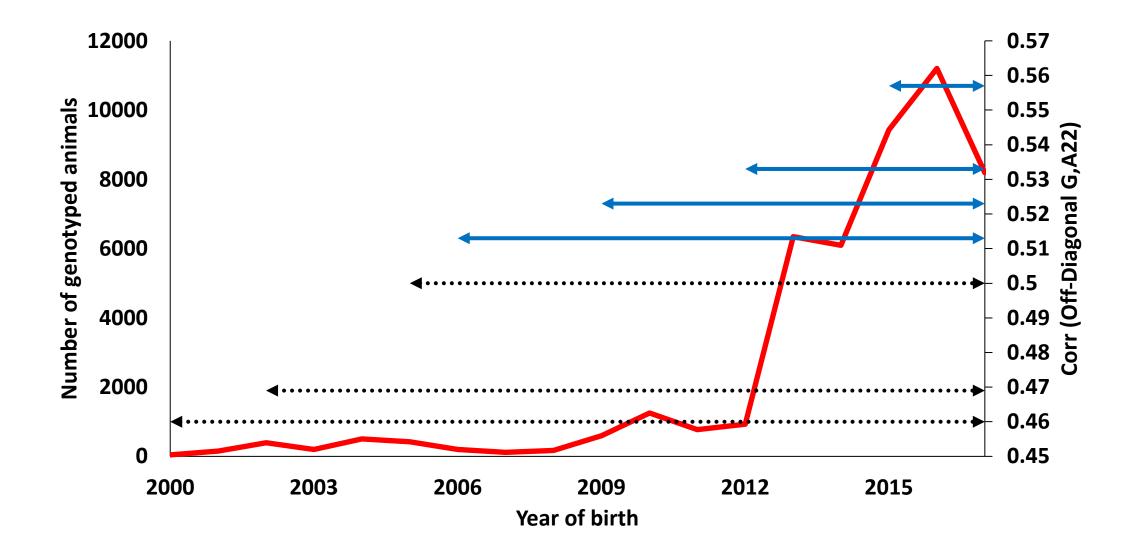

Alpha	TRAIT 1	TRAIT 2	TRAIT 3
0.95	-2.0	-1.1	2.6
0.9	-2.0	-1.2	2.3
0.8	-1.9	-1.2	2.3

Case study I: Alternatives

• Expand model to exact UPG (Misztal et al. 2013):

$$\begin{bmatrix} \mathbf{Z}'\mathbf{Z} + \mathbf{H}^{-1}\boldsymbol{\lambda} & -\mathbf{H}^{-1}\mathbf{Q}\boldsymbol{\lambda} \\ -\mathbf{Q}\mathbf{H}^{-1}\boldsymbol{\lambda} & \mathbf{Q}'\mathbf{H}^{-1}\mathbf{Q}\boldsymbol{\lambda} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{u}} \\ \hat{\mathbf{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{Z}'\mathbf{y} \\ 0 \end{bmatrix}$$

• Use metafounders instead UPG (Legarra et al. 2015):


Case study II: Line 2 problem

- Analysis was automatically stopped by program
- <u>Source of the problem</u>: Low correlations for off-diagonals in **G** and **A**₂₂
- Default threshold in BLUPf90 is 0.3 to STOP / 0.5 to ALERT
- Typically 0.6±0.15
- Depend on pedigree depth
- Especially low in pig datasets:
 - Disconnected lines connected through G, but not through A
 - A lot of full-sibs (e.g. 0.5 in **A**, but large deviation in **G**)

Case study II: Methods

- ssGBLUP using several options:
 - Change $\alpha \& \beta$; ($\alpha = 0.95, 0.9, 0.8; \beta = 1 \alpha$)
 - Use random UPG
 - Truncate genotypes (based on year of birth)
 - Adjust threshold in BLUPf90 for off-diagonal correlations between
 G and A₂₂
- Validation:
 - Changes to the mean GEBV for selection candidates
 - Changes to the UPG solutions

Case study II: Truncation of genotypes

Case study II: Solutions

- Lower the threshold for correlation of off-diagonal elements (G and A₂₂) in BLUPf90 use default values
- 2. Remove older genotypes
- Previous studies at UGA showed that reduction of data/pedigree doesn't influence accuracy, but helps convergence and stability (e.g. Lourenco et al. 2014; Pocrnic et al. 2017)

Case study II: G-matrix elements statistics

Allele Frequencies	r [off-diagonal (G,A)]	r [inbreeding (G,A)]
Current	0.46	-0.17
Equal (0.5)	0.78	0.57

• Highest values using the base allele frequencies (VanRaden, 2008)

General problems & solutions

- 1. <u>UPG problems</u> not estimable functions and dependent on population structure weak connections between the sub-lines
 - Simple: Model UPG as random effects
- 2. <u>Old genotypes problems</u> due to quality of genotyping and/or multiple imputations
 - Simple: Remove old genotypes
- Solutions on several levels:
 - Data manipulation
 - Model assessment
 - Software fine adjustment

Thank you !!!