

Selection to mitigate heat stress in pigs

Daniela Lourenco

B. Fragomeni, S. Tsuruta, I. Misztal

Are hot days becoming more common?

How livestock deal with heat stress

How livestock deal with heat stress

Impact of heat stress in pigs

- Pigs do not sweat
- Small lungs
- Thick subcutaneous fat

Reduced daily gain

Fertility problems

Increased risk of diseases

Main adaptation to reduce heat production

Increased respiration rate

Increased contact with cooler surfaces

Panting

Reduced feed intake

Increased water intake

Acid-base imbalance

Impact of heat stress in pigs

Renaudeau et al., 2011

Temperature + Humidity

Heat Stress Index for grow-finish swine Source: Iowa State University

Economic losses due to heat stress in pigs

• \$113 million for sows

St-Pierre et al., 2003

\$203 million for growing-finishing pigs

- What can we do?
 - Improve management
 - Improve genetics
 - Traditional or Genomic

Genetic selection in pigs

Feed = 379 kgmkt weight = 100 kg

FCR = 3.8

1972

Feed = 324 kg mkt weight = 125 kg

FCR = 2.6

2007

Figure 2. Improvements in feed conversion ratio. Feed requirements moved from 836 lbs to produce a 220 market hog in 1972 to 715 lbs of feed in 2007 to produce a 275 lb market hog. (Adapted from Graham Plastow, 2012)

Heat production increased 20%

Brown-Brandl et al., 2003

More susceptible to heat stress

Selecting for heat stress in pigs

1) Investigate the impact of heat stress in the population

Losses in traits of interest

2) Define and measure heat stress

Threshold for heat tolerance

3) Find ways to model heat stress

How to account for heat stress

4) Identify heat tolerant animals - genetics

Identify major genes if they exist

1) Impact of heat stress in a breeding population

Smithfield

Fragomeni et al., 2016

- 228k Duroc X Landrace x Large White
- North Carolina and Missouri

- 207k Duroc (8k genotyped)
- North Carolina and Texas

• Temperature-humidity index (THI)

NOAA (1976)

- THI = t (0.55 (0.0055 * rh))*(t 58)
 - t = temperature (F)
 - rh = relative humidity (%)
- Airport weather stations

Relationship between THI and phenotype to define threshold

- THI = 70 (°F) or 21 (°C)
- 30 days before phenotyping

Heat load function: degrees of THI above a threshold

$$HL = maximum(0,THI - THI_T)$$

Crossbred

HL = maximum(0,THI - 70)

Purebred

HL = maximum(0,THI - 70)

Reaction norm models

- Model phenotypes over a continuous HL scale
- Genetic parameters and EBV for all HL in the data

Reaction norm models

Fragomeni et al., 2016

- Separate for pure and crossbred
- Single or two-trait based on State

Purebred

Crossbred

Reaction norm models – Genetic correlations for Purebred trait

Reaction norm models – Genetic correlations for Crossbred trait

- Reaction norm models + Genomic info
 - Compare traditional and genomic models

- Problems with reaction norm models
 - More complex
 - More parameters
 - Higher computing time
 - How to use this information to select animals?
 - $EBV_{HL} = b_0 + b_1 * HL$
 - Is there another way to model heat stress?

2-trait model with new trait definition

Fragomeni et al., 2016

- Non-heat stress (NHS)
- Heat stress (HS)
- Thresholds at 70 °F (21 °C) and 78 °F (25.5 °C)

- 2-trait model with new trait definition + Genomic info
 - Compare traditional and genomic models

4) Identifying heat tolerant animals

4) Identifying heat tolerant animals

4) Identifying heat tolerant animals

- Commercial population
 - Boars with equal EPD for HCW single-trait
 - Different EPD for HS HCW

How to use this information for selection?

2-trait model with threshold at 78 °F (25.5 °C)

EBV for weight above 78 °F (25.5 °C)

Are there major genes for heat stress?

Conclusions

- Genetic evaluation for heat tolerance in pigs is possible
- Requires proper definition of heat stress/tolerance
 - Proper modeling
 - Multiple-trait models or Reaction norm models
- Genomic information can help to identify heat tolerant animals
- Impact of heat stress depends on genetics and management
 - Evidence of heat stress in crossbred
 - Purebreds have better housing conditions

Acknowledgements

Ignacy Misztal

Breno Fragomeni

Shogo Tsuruta

Heather Bradford

Kent Gray

Yijian Huang

Sreten Andonov