


GWAS for Detecting QTL Associated with Columnaris Disease in Two Rainbow Trout Breeding Populations

Rafael M.O. Silva^{1,2}, Jason P. Evenhuis², Roger L. Vallejo², Guangtu Gao², Kyle E. Martin³, Ignacy Misztal¹, Timothy D. Leeds², Daniela A.L. Lourenco¹ and Yniv Palti²

¹University of Georgia, Athens, GA, ²USDA-ARS- NCCCWA, Kearneysville, WV, ³Troutlodge, Inc., Sumner, WA

Introduction

• Parasites and disease - (NASS, 2017)

https://columbusaudubon.org/invasive-species-rainbow-trout/

- Columnaris disease CD (Flavobacterium columnare)
 - ✓ Affects both cultured and wild freshwater fish of all ages
 - ✓ High mortality
 - ✓ Economic loss
 - ✓ Horizontal transmission

Introduction

- Control of infectious diseases
- > Antibiotic

≻Vaccine

High cost of vaccinesEfficiency not clear in rainbow trout

Genetic Selection

✓ Traditional genetic improvement

✓ Genomic information

✓ More accurate genomic evaluation✓ QTLs

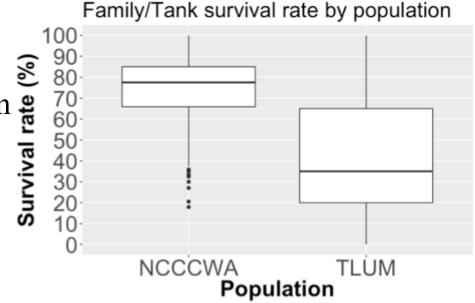
Objectives

- Explore, understand and compare the genetic architecture of CD resistance in two rainbow trout breeding populations
- Prospect genomic regions that explain large proportion of the additive genetic variance of CD resistance

Material and Methods

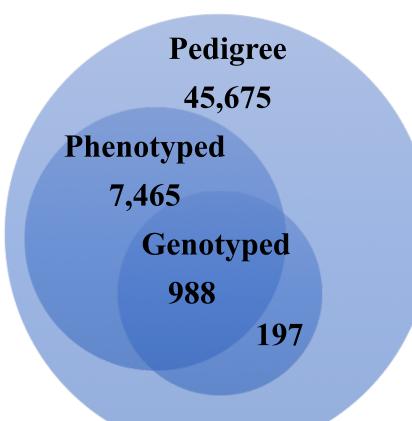
- National Center of Cool and Cold Water Aquaculture (NCCCWA)
 - Leetown, West Virginia

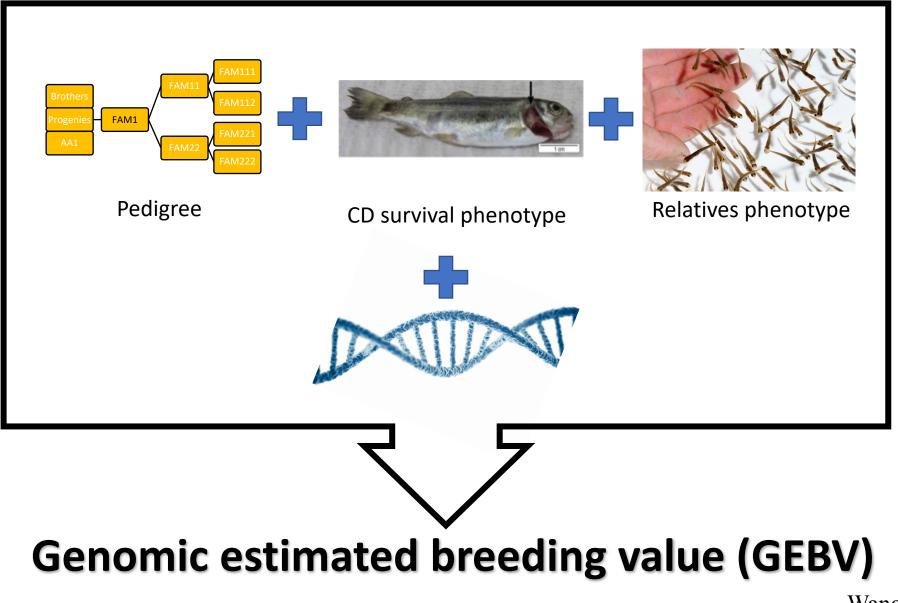
- Troutlodge, Inc. (TLUM)
 - Sumner, WA



Material and Methods

Disease resistance phenotypes


- Disease challenges were conducted at the USDA, ARS, NCCCWA
- Bath challenge
- F. Columnaris strain CSF298-10 (Evenhuis et al., 2014)
- Binary survival status (STATUS)
 - > 1= fish died during the 21 d post-challenge evaluation $\frac{1}{2}$
 - \geq 2= fish was alive on day 22 post-challenge



Genotypes

• Genotypes for 57k SNP (Affymetrix Axiom®)

Pedigree 32,132 Phenotyped 2,996 Genotyped **990** 147

1) SNP/Sample quality control

allele freq > 0.05
call rate SNP > 0.90
call rate sample > 0.90

35,900 SNPs 1,185 fish

33,980 SNPs 1,136 fish

1) SNP/Sample quality control

2) Compute genomic estimated breeding value (GEBV) using ssGBLUP:➢Aguilar et al., 2010:

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

$$\mathbf{G} = \frac{\mathbf{Z}\mathbf{Z}'}{2\sum p_i(1-p_i)}$$

➤ Threshold model:

 $\mathbf{I} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{a} + \mathbf{W}\mathbf{f} + \mathbf{e}$

I is the vector of underlying distribution of CD resistance

 β is the vector of systematic effects (system and row)

a is the vector of random additive direct genetic effects

f is a vector of random tank/family effect

e is the vector of random residuals

X, Z, and W are the incidence matrices for the effects contained in β , a, and f, respectively

1) SNP/Sample quality control

2) Compute genomic estimated breeding value (GEBV) using ssGBLUP:

3) Compute SNP effects based on GEBV

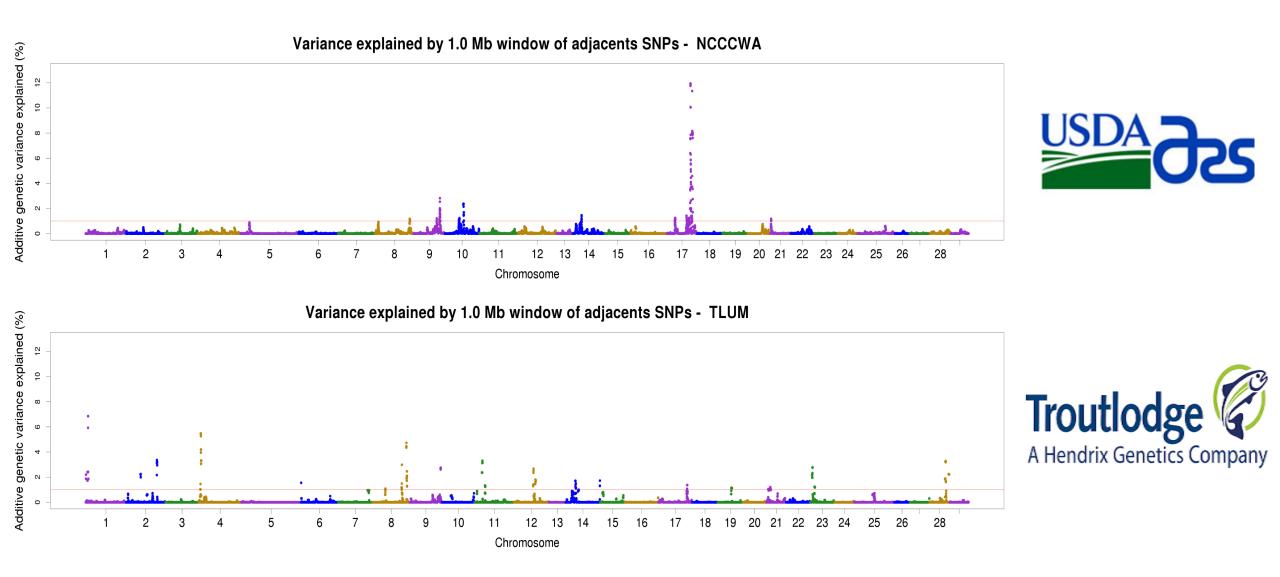
4) Calculate SNP weight (W)

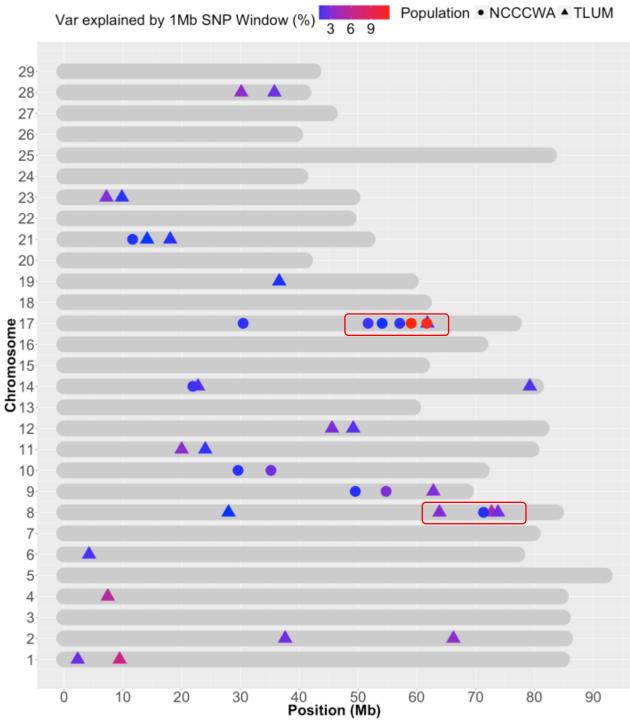
5) Use the weights to construct the genomic relationship matrix as:

$$\mathbf{G}^{*=} \frac{\mathbf{Z}W\mathbf{Z}'}{2\sum p_i(1-p_i)}$$

Percentage of variance explained by 1Mb length size moving windows

$$\frac{Var(a_i)}{\sigma_a^2} \ge 100\% = \frac{Var(\sum_{j=i}^{x} Z_j \hat{u}_j)}{\sigma_a^2} \ge 100\%$$


 a_i is genetic value of the ith region


 σ_a^2 is the total genetic variance

 Z_j is vector of SNP content of the j-th SNP for all individuals

 \hat{u}_j is marker effect of the *j*-th within the *i*-th region

Results

SNP Windows that explained more than 1% of the additive genetic variance.

A total of 13 associated windows located on six chromosomes

A total of 25 associated windows located on 13 chromosomes

Discussion

- Selective pressure for different purposes might have contributed to detecting different genomic regions associated with CD resistance in the two populations.
- > BCWD and CD resistance can be simultaneously improved, genetic correlation between these traits 0.35 ± 0.25 (Evenhuis et al., 2015)
- > CD resistance $h^2=0.18\pm0.07$, $h^2=0.35\pm0.09$ for USDA's and TLUM's population, respectively.
- ➤ Genes possibly fixed due to genetic selection
- > Small population is hard to estimate the SNP effect precisely
- > Overlapping windows

Conclusion

Columnaris disease has a polygenic architecture

➤ small/moderate effect QTLs were detected

➤ The SNP windows found to be associated with CD do not explain a proportion of variance large enough for choosing marker assisted selection (MAS) instead of genome-wide selection (GS)

➢ Few overlapping windows regions should not be used for selection decisions across populations

ACKNOWLEDGEMENT

NCCCWA

- Yniv Palti
- Roger Vallejo
- Tim Leeds
- Jason Evenhuis
- Guangtu Gao
- Greg Wiens
- Sixin Liu

Troutlodge, Inc.

- Kyle Martin
- Jim Parsons

University of Georgia

- Daniela Lourenco
- Ignacy Misztal
- Shogo Tsuruta
- Breno Fragomeni

Fish Caretakers

- Ryan Lipscomb
- Travis Moreland
- Clayton Birkett
- Josh Kretzer

Laboratory Mol. Biol.

- Roseanna Long
- Kristy Shewbridge
- Cassandra Parker
- Bryce Williams

