Pre-selection bias and validation in single-step GBLUP for production traits in US Holstein

Y. Masuda¹, P. M. VanRaden², I. Misztal¹, and T. J. Lawlor³

1 University of Georgia, USA 2 AGIL, USDA, USA 3 Holstein Association USA, Inc., USA

WCGALP 2018, February 11-16, Auckland, New Zealand

Genomic selection in practice

Implementation

Statistical Methods

Genomic tools

- Use of existing data-collection systems (phenotypes & pedigrees)
- Integration of genomic data
- Stabilization of genomic predictions
- Breeding value prediction
- Adjustments for bias-reduction
- Computing algorithms
- Efficient genotyping technique
- Affordable SNP chips

Dairy cattle evaluation

Conventional animal-model BLUP

Multi-step evaluation

Advantages

- Keeping the traditional systems
- Flexibly adjustable for GPTA (GEBV) in terms of bias
- Accumulated experience
- Concerns
 - Only for genotyped animals
 - Too many options for the second step (input values & methods)
 - "Pre-selection bias" in the traditional PTA

- Selection criteria not included in MME of animal model BLUP
- Bias down in the prediction

- Biased PTA (EBV) to GPTA
- GPTA biased down

• Possible result: underestimated genetic trend for genomically selected animals

Single-step GBLUP

Single-step GBLUP

• Advantages

- Expected accountability for genomic pre-selection
- Use of genotyped & nongenotyped in the same equations
- Simplicity
- Concerns
 - Computational costs (solved)
 - Is it reliable for genomic prediction in dairy cattle?

Production traits of US Holsteins

- Comparison of genetic trends
 - Single-step GBLUP GPTA vs the traditional PTA (Data up to 2015)
 - Multi-step official GPTA vs the corresponding PTA (Published in 2016)
- Validation reliability for young bulls
 - 4-year truncated data
 - DYD in 2015 vs GPTA in 2011
- Computational feasibility
 - APY: Algorithm for Proven and Young for ${\bf G}^{-1}$

Full data

Data	Description	Number of records
Phenotypes	305-d Milk, fat, and protein yield from US Holsteins; from 1990 to 2015	50,970,954
Pedigree	3 generations back from phenotyped cows or genotyped animals; 215 unknown-parent groups (UPG)	29,651,623
Genotypes	Both male and female; including young bulls and heifers (#SNPs = 60671)	764,029

Three-trait repeatability model; same as in the official evaluation.

\mathbf{H}^{-1} and GPTA

- Mixed model equations $\begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{X}'\mathbf{R}^{-1}\mathbf{Z} \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{X} & \mathbf{Z}'\mathbf{R}^{-1}\mathbf{Z} + \mathbf{H}^{-1} \otimes \boldsymbol{\Sigma}_{g}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{R}^{-1}\mathbf{y} \\ \mathbf{Z}'\mathbf{R}^{-1}\mathbf{y} \end{bmatrix}$
- Inverse relationship matrix

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}^{-1} - \boldsymbol{\omega} \mathbf{A}_{22}^{-1} \end{bmatrix}$$

• GPTA of a young animal $GPTA = w_1PA + w_2DGV - w_3PI$

• ω : Constant to compensate for missing pedigrees ($\omega = 1$ for the full data).

Aguilar et al. (2010)

APY: Algorithm for Proven and Young

- Genotyped animals into two groups: "core" and "non-core"
 - Assumption:

$$\mathbf{u}_n = \mathbf{P}\mathbf{u}_c + \mathbf{\Phi}$$

- BV for non-core (\mathbf{u}_n) is a linear function of BV for core (\mathbf{u}_c) .
- APY G-inverse (Misztal et al. 2016)

$$\mathbf{G}_{APY}^{-1} = \begin{bmatrix} \mathbf{G}_{cc}^{-1} + \mathbf{G}_{cc}^{-1}\mathbf{G}_{cn}\mathbf{M}^{-1}\mathbf{G}_{cn}'\mathbf{G}_{cc}^{-1} & \mathbf{G}_{cc}^{-1}\mathbf{G}_{cn}\mathbf{M}^{-1} \\ -\mathbf{M}^{-1}\mathbf{G}_{cn}'\mathbf{G}_{cc}^{-1} & \mathbf{M}^{-1} \end{bmatrix}$$

• **M**⁻¹: Diagonal matrix

APY G^{-1}

• Sparse

- Easy computations
- Gives the same GPTA as the regular G⁻¹ using a few core animals (Fragomeni et al., 2015)
- How to choose core animals?
 - How many? dimensionality of G
 - Which animals? random choice

Dimensionality of ${\bf G}$

- Dim. of $G \approx M_e$
 - *M_e*: the number of independent chromosome segments
 - = the optimal number of core animals
- Estimate of dim. of G
 - *M_e* ≈ the # of largest eigenvalues explaining the most (98%) of variation in G
 - 18,359 cores for 760K US Holsteins

Which core animals?

Bradford et al. (2017)

- The best practice:
 - Core animals covering all generations.
 - Or, just randomly choose the core.
- Core animals represent independent chromosome segments in the populations.
- In this study:
 - 18,359 random core animals

Inbreeding and UPG

• QP-transformation for A^{-1} (Westell et al., 1988; Quaas 1988)

$$\mathbf{A}^* = \begin{bmatrix} \mathbf{A}^{-1} & -\mathbf{A}^{-1}\mathbf{Q} \\ -\mathbf{Q}'\mathbf{A}^{-1} & \mathbf{Q}'\mathbf{A}^{-1}\mathbf{Q} \end{bmatrix}$$
: Henderson's rule with inbreeding

• QP-transformation for H^{-1} (Misztal et al., 2013)

$$\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} & -(\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1})\mathbf{Q}_2 \\ 0 & -\mathbf{Q}_2'(\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1}) & \mathbf{Q}_2'(\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1})\mathbf{Q}_2 \end{bmatrix}$$

Computing time

Preparation	Traditional BLUP	Single-step GBLUP	
\mathbf{G}_{APY}^{-1}	N/A	6 h 53 min	
Other	9 min	48 min	
Subtotal in preparation	9 min	7 h 41 min	
Iteration	Traditional BLUP	Single-step GBLUP	
Number of iterations	402	464	
Time per PCG iteration	51 sec	83 sec	
Post-processing	12 min	13 min	
Subtotal in iterations	5 h 53 min	10 h 54 min	

Intel Xeon X7650 (2.26 GHz; 20 cores for preparation and 6 cores for iterations)

Computationally feasible

Cows : ssGBLUP vs traditional PTA (protein)

*Cows with record(s)

Cows : ssGBLUP vs traditional PTA (protein)

Bulls: ssGBLUP vs traditional PTA (protein)

*Genotyped bulls with at least 10 daughters with record(s)

Bias in genotyped cows and bulls

Larger bias in cows: shorter generation interval & lower reliability of GPTA

Adjustments on the official PTA

- Official PTA adjusted by Wiggans et al. (2012)
 - Cow trend aligned to bull trend (Reduction in bias for cows)
 - Same trend in PTA and GPTA
- Additional adjustments in the official evaluation
 - Breed difference
 - Inbreeding

Validation study

Validation Bulls: Genotyped young bulls with no tested daughters in 2011 but with at least 50 tested daughters in 2015 (N=3,797)

 $DYD2015 = b_1 \times GPTA2011 + b_0$

- R² value: validation reliability
- Slope (*b*₁): Bias of prediction

Configurations in \mathbf{H}^{-1}

- 1. Weight (ω) on A_{22}^{-1} : **0.9** or **1.0**
- 2. UPG: pedigree only, pedigree + genomic UPG, or no UPG

$$\mathbf{H}^{*} = \mathbf{A}^{*} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - \omega \mathbf{A}_{22}^{-1} & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -(\mathbf{G}^{-1} - \omega \mathbf{A}_{22}^{-1})\mathbf{Q}_{2} \\ 0 & -\mathbf{Q}_{2}'(\mathbf{G}^{-1} - \omega \mathbf{A}_{22}^{-1}) & \mathbf{Q}_{2}'(\mathbf{G}^{-1} - \omega \mathbf{A}_{22}^{-1})\mathbf{Q}_{2} \end{bmatrix}$$

DYD2015 vs GPTA2011 (Protein)

Data				R2	b1
Official GPTA 2011				0.51	0.81
		ω=0.9		ω=1.0	
Data	UPG	R2	b1	R2	b1
Truncated 2011	Pedigree	0.50	0.96	0.52	0.78
	Ped. + Genomic	0.39	0.74	0.32	0.51
	No UPGs			0.50	0.78

Different predictions by UPG

Incomplete pedigree on accuracy & inflation

* Simulated data (Bradford et al., 2017)

Low accuracy with genomic UPG

- GPTA for young genotypes
 - No UPG: $GPTA = w_1 PA + w_2 DGV w_3 PI \approx DGV$
 - With UPG: $GPTA = w_1PA + w_2DGV w_3PI + w_4UPG \approx DGV + UPG$

Larger weights with many genotypes

Not needed for young animals

- Specific pattern of missing pedigree
 - Production traits: many grade animals
 - No problem in Finland (Koivula et al. 2017) or for US type traits (Tsuruta 2017)
- Solutions: research in progress
 - Option: only DGV for young genotypes
 - Metafounders

Indirect prediction

- Optional step to ssGBLUP
 - 1. Compute DGV $\widehat{\boldsymbol{u}}$ from ssGBLUP without young animals
 - 2. Compute SNP effects as $\hat{\mathbf{a}} = k\mathbf{Z}'\mathbf{G}\hat{\mathbf{u}}$.
 - 3. Compute DGV for young animals as $\hat{\mathbf{u}}_{young} = \mathbf{Z}\hat{\mathbf{a}}$.
- Successfully applied to Angus & simulated data

Bradford et al. (2017)

Metafounders

- Regular ssGBLUP: scaling G to A; reasonable in complete pedigree
- Metafounders: scaling A to G
 - Treat UPG as metafounders
 - Estimate genomic relationships among metafounders ($\boldsymbol{\Gamma}$) using \boldsymbol{G}
 - Construct A^{-1} and A^{-1}_{22} with Γ using the Henderson's and Collau's methods
- Final form:

$$\mathbf{H}^{\Gamma-1} = \mathbf{A}^{\Gamma-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{\Gamma-1} \end{bmatrix}$$

Legarra et al. (2015)

Summary

- The traditional PTA for genotyped animals are likely underestimated; Needs adjustments in multi-step methods.
- Single-step GBLUP can account for the pre-selection bias.
- Single-step GBLUP may give a reasonable genetic trend without adjustments.
- Missing pedigree may reduce predictability of genomic predictions.
- We can recover the predictability for young animals; research in progress.

Acknowledgement

- USDA NIFA (2015-67015-22936) and Holstein Association USA for financial support.
- Council of Dairy Cattle Breeding for phenotype, genotype, and pedigree data.
- John Cole and Melvin Tooker (USDA-AGIL) for preparing the initial data sets and a computing environment.

Daniela A. L. Lourenco

lgnacy Misztal

Yvette Steyn

Andre Garcia

Andres Legarra

Instituto Nacional de Investigación Agropecuaria U R U G U A Y

lgnacio Aguilar

Breno Fragomeni

lvan Pocrnic

Rafael

Silva

Shogo Tsuruta

Heather Bradford