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Genomic selection in practice

Genomic tools

Statistical Methods

Implementation

• Efficient genotyping technique
• Affordable SNP chips

• Breeding value prediction
• Adjustments for bias-reduction
• Computing algorithms

• Use of existing data-collection 
systems (phenotypes & pedigrees)

• Integration of genomic data
• Stabilization of genomic predictions



Dairy cattle evaluation
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Multi-step evaluation

Young & mature animals

Multi-step (MS) genomic evaluation

Phenotype 
Pedigree PTA (EBV)
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Mature 
animals
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Genomic data GPTA (GEBV)
GPA

• Advantages
• Keeping the traditional systems

• Flexibly adjustable for GPTA 
(GEBV) in terms of bias

• Accumulated experience

• Concerns
• Only for genotyped animals

• Too many options for the second 
step (input values & methods)

• “Pre-selection bias” in the 
traditional PTA



Pre-selection bias

Young & mature animals

Multi-step (MS) genomic evaluation
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Only selected data
included in animal model BLUP

Young genotyped animals:



Pre-selection bias

Young & mature animals

Multi-step (MS) genomic evaluation
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• Selection criteria not included in MME of 
animal model BLUP

• Bias down in the prediction



Pre-selection bias

Young & mature animals

Multi-step (MS) genomic evaluation

Phenotype 
Pedigree PTA (EBV)

PA

Mature 
animals

Pre-selected
young animals

Genomic data GPTA (GEBV)
GPA

• Biased PTA (EBV) to GPTA
• GPTA biased down



Pre-selection bias

Young & mature animals

Multi-step (MS) genomic evaluation

Phenotype 
Pedigree PTA (EBV)

PA

Mature 
animals

Pre-selected
young animals

Genomic data GPTA (GEBV)
GPA

Year

GPTA

Traditional PTA &
Multi-step GPTA

• Possible result: underestimated genetic 
trend for genomically selected animals



Single-step GBLUP

Young & mature animals

Single-step GBLUP

Phenotype 
Pedigree

Genomic data
GPTA (GEBV)

GPA

Mature 
animals

Pre-selected
young animals

• Advantages
• Expected accountability for 

genomic pre-selection

• Use of genotyped & non-
genotyped in the same equations

• Simplicity

• Concerns
• Computational costs (solved)

• Is it reliable for genomic 
prediction in dairy cattle?

√

√
√



Production traits of US Holsteins

• Comparison of genetic trends
• Single-step GBLUP GPTA vs the traditional PTA (Data up to 2015)

• Multi-step official GPTA vs the corresponding PTA (Published in 2016)

• Validation reliability for young bulls
• 4-year truncated data

• DYD in 2015 vs GPTA in 2011

• Computational feasibility
• APY: Algorithm for Proven and Young

for 𝐆−1
Year

(G)PTA

ssGBLUP (GPTA)

Traditional BLUP
(PTA)

Genetic trend of
old animals

Predictability of
young bulls



Full data

Data Description Number of records

Phenotypes 305-d Milk, fat, and protein yield from
US Holsteins; from 1990 to 2015 50,970,954

Pedigree 3 generations back from phenotyped
cows or genotyped animals;
215 unknown-parent groups (UPG)

29,651,623

Genotypes Both male and female; including young 
bulls and heifers (#SNPs = 60671) 764,029

Three-trait repeatability model; same as in the official evaluation.



𝐇−1 and GPTA

• Mixed model equations
𝐗′𝐑−1𝐗 𝐗′𝐑−1𝐙
𝐙′𝐑−1𝐗 𝐙′𝐑−1𝐙 + 𝐇−𝟏 ⊗𝚺g

−𝟏
መ𝐛
ෝ𝐮

=
𝐗′𝐑−1𝐲

𝐙′𝐑−𝟏𝐲

• Inverse relationship matrix

𝐇−1 = 𝐀−1 +
0 0
0 𝐆−1 − 𝜔𝐀22

−1

• GPTA of a young animal

𝐺𝑃𝑇𝐴 = 𝑤1𝑃𝐴 + 𝑤2𝐷𝐺𝑉 − 𝑤3𝑃𝐼

• 𝜔: Constant to compensate for missing pedigrees
(𝜔 = 1 for the full data). Aguilar et al. (2010)



APY: Algorithm for Proven and Young 

• Genotyped animals into two groups: “core” and “non-core”
• Assumption:

𝐮𝑛 = 𝐏𝐮𝑐 +𝚽

• BV for non-core (𝐮𝑛) is a linear function of BV for core (𝐮𝑐).

• APY G-inverse (Misztal et al. 2016)

𝐆𝐴𝑃𝑌
−1 =

𝐆𝑐𝑐
−1 + 𝐆𝑐𝑐

−1𝐆𝑐𝑛𝐌
−1𝐆𝑐𝑛

′ 𝐆𝑐𝑐
−1 𝐆𝑐𝑐

−1𝐆𝑐𝑛𝐌
−1

−𝐌−1𝐆𝑐𝑛
′ 𝐆𝑐𝑐

−1 𝐌−1

• 𝐌−1: Diagonal matrix



APY 𝐆−1

𝐆𝐴𝑃𝑌
𝑛𝑐𝐆𝐴𝑃𝑌

𝑐𝑐

𝐆𝐴𝑃𝑌
𝑛𝑛𝐆−𝟏

Regular 𝐆−1 APY 𝐆−1

• Sparse

• Easy computations

• Gives the same GPTA as the 
regular 𝐆−1 using a few core 
animals (Fragomeni et al., 2015)

• How to choose core animals?
• How many? – dimensionality of G

• Which animals? – random choice



Dimensionality of G

• Dim. of G ≈ 𝑀𝑒

• 𝑀𝑒: the number of independent 
chromosome segments 
= the optimal number of core 
animals

• Estimate of dim. of G
• 𝑀𝑒 ≈ the # of largest eigenvalues 

explaining the most (98%) of 
variation in G

• 18,359 cores for 760K US Holsteins
Pocrnic et al. (2016)

Final Score for US Holsteins



Which core animals?

• The best practice:
• Core animals covering all 

generations.

• Or, just randomly choose the core.

• Core animals represent 
independent chromosome 
segments in the populations.

• In this study:
• 18,359 random core animals

Accuracy

Bradford et al. (2017)



Inbreeding and UPG

• QP-transformation for 𝐀−1 (Westell et al., 1988; Quaas 1988)

𝐀∗ =
𝐀−𝟏 −𝐀−𝟏𝐐

−𝐐′𝐀−𝟏 𝐐′𝐀−𝟏𝐐
: Henderson’s rule with inbreeding

• QP-transformation for 𝐇−1 (Misztal et al., 2013)

𝐇∗ = 𝐀∗ +

0 0 0
0 𝐆−1 − 𝐀22

−1 − 𝐆−1 − 𝐀22
−1 𝐐2

0 −𝐐2
′ (𝐆−1 − 𝐀22

−1) 𝐐2
′ (𝐆−1 − 𝐀22

−1)𝐐2



Computing time

Preparation Traditional BLUP Single-step GBLUP

𝐆𝐴𝑃𝑌
−1 N/A 6 h 53 min

Other 9 min 48 min

Subtotal in preparation 9 min 7 h 41 min
Iteration Traditional BLUP Single-step GBLUP

Number of iterations 402 464

Time per PCG iteration 51 sec 83 sec

Post-processing 12 min 13 min

Subtotal in iterations 5 h 53 min 10 h 54 min
Intel Xeon X7650 (2.26 GHz; 20 cores for preparation and 6 cores for iterations)

Computationally feasible
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Bias in genotyped cows and bulls
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Larger bias in cows: shorter generation interval & lower reliability of GPTA
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Adjustments on the official PTA

• Official PTA adjusted by Wiggans
et al. (2012)
• Cow trend aligned to bull trend

(Reduction in bias for cows)

• Same trend in PTA and GPTA

• Additional adjustments in the 
official evaluation
• Breed difference

• Inbreeding

Milk yield

16kg/yr

24kg/yr
= same as GPTA
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2006 2008 2010 2012

Unadjusted
PTA

Adjusted PTA



Validation study

Phenotype

2015
Apr.

2011
Dec.

Pedigree

20001990Full Validation Bulls: 
Genotyped young bulls
with no tested daughters 
in 2011 but with at least 
50 tested daughters in 
2015 (N=3,797)

For Daughter
Yield Deviation
(DYD2015)

Phenotype
Genotype
Pedigree

1990Truncated For GPTA using 
ssGBLUP
(GPTA2011)

2015
Apr.

2011
Dec.

𝐷𝑌𝐷2015 = 𝑏1 × 𝐺𝑃𝑇𝐴2011 + 𝑏0
• R2 value: validation reliability
• Slope (𝑏1): Bias of prediction

2000



Configurations in 𝐇−1

1. Weight (𝜔) on 𝐀22
−1: 0.9 or 1.0

2. UPG: pedigree only, pedigree + genomic UPG, or no UPG

𝐇∗ = 𝐀∗ +
0 0 0
0 𝐆−1 − 𝜔𝐀22

−1 0
0 0 0

+

0 0 0
0 0 − 𝐆−1 − 𝜔𝐀22

−1 𝐐2
0 −𝐐2

′ (𝐆−1 − 𝜔𝐀22
−1) 𝐐2

′ (𝐆−1 − 𝜔𝐀22
−1)𝐐2



DYD2015 vs GPTA2011 (Protein)

Data UPG
ω=0.9

R2 b1
ω=1.0

R2 b1

Truncated 2011 Pedigree 0.50 0.96 0.52 0.78

Ped. + Genomic 0.39 0.74 0.32 0.51

No UPGs 0.50 0.78

Data R2 b1

Official GPTA 2011 0.51 0.81

Different predictions by UPG



Incomplete pedigree on accuracy & inflation

Complete
pedigree

Incomplete
pedigree

Accuracy Inflation

* Simulated data (Bradford et al., 2017)



Low accuracy with genomic UPG

• GPTA for young genotypes
• No UPG: 𝐺𝑃𝑇𝐴 = 𝑤1𝑃𝐴 + 𝑤2𝐷𝐺𝑉 − 𝑤3𝑃𝐼 ≈ 𝐷𝐺𝑉

• With UPG: 𝐺𝑃𝑇𝐴 = 𝑤1𝑃𝐴 + 𝑤2𝐷𝐺𝑉 − 𝑤3𝑃𝐼 + 𝑤4𝑈𝑃𝐺 ≈ 𝐷𝐺𝑉 + 𝑈𝑃𝐺

• Specific pattern of missing pedigree
• Production traits: many grade animals

• No problem in Finland (Koivula et al. 2017) or for US type traits (Tsuruta 2017)

• Solutions: research in progress
• Option: only DGV for young genotypes

• Metafounders

Larger weights with many genotypes Not needed for
young animals



Indirect prediction

• Optional step to ssGBLUP
1. Compute DGV ෝ𝐮 from ssGBLUP without young animals

2. Compute SNP effects as ො𝐚 = 𝑘𝐙′𝐆ෝ𝐮.

3. Compute DGV for young animals as ෝ𝐮𝑦𝑜𝑢𝑛𝑔 = 𝐙ො𝐚.

• Successfully applied to Angus & simulated data

Lourenco et al. (2015)
Bradford et al. (2017)



Metafounders

• Regular ssGBLUP: scaling 𝐆 to 𝐀; reasonable in complete pedigree

• Metafounders: scaling 𝐀 to 𝐆
• Treat UPG as metafounders

• Estimate genomic relationships among metafounders (𝚪) using 𝐆

• Construct 𝐀−1 and 𝐀22
−1 with 𝚪 using the Henderson’s and Collau’s methods

• Final form:

𝐇Γ−1 = 𝐀Γ−1 +
𝟎 𝟎
𝟎 𝐆−1 − 𝐀𝟐𝟐

Γ−1

Legarra et al. 
(2015)



Summary

• The traditional PTA for genotyped animals are likely underestimated; 
Needs adjustments in multi-step methods.

• Single-step GBLUP can account for the pre-selection bias.

• Single-step GBLUP may give a reasonable genetic trend without 
adjustments.

• Missing pedigree may reduce predictability of genomic predictions.

• We can recover the predictability for young animals; research in 
progress.
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