Changes in genomic predictions when new information is included

J. Hidalgo, D. Lourenco, S. Tsuruta, S. Miller, A. Garcia
Y. Masuda, M. Bermann, and I. Misztal
Introducing

• Persistence of genomic evaluations depends on the amount of data and population parameters

• Persistence may be high when the data is large enough
 - Chromosome segments can be well estimated
 - 10,000 to 15,000

• Stable predictions
 - e.g., > 15k genotyped bulls with high accuracy
• Stability of GEBV when more data is included is a desirable feature

• Fluctuations over time due to limited accuracy and decay of genomic information

• Small changes without additional information is a special requirement
• Evaluate changes in EBV and GEBV when new data is added on a monthly basis from December/2016 to December/2017
Materials and Methods

• Birth Weight (BW = 8,186,503)
• Weaning Weight (WW = 8,881,124)
• Post-Weaning Gain (PWG = 4,386,184)

• 10,129,980 animals in the pedigree
• 484,074 animals with genotypes

• 3-Trait model used in routine evaluations
• BLUP
• ssGBLUP using APY with 20K size core
New data by month

- **BW Dec/2016 (7,900,946) → 285,557 → Dec/2017 (8,186,503)**
- **WW Dec/2016 (8,630,227) → 250,897 → Dec/2017 (8,881,124)**
- **PWG Dec/2016 (4,298,754) → 87,430 → Dec/2017 (4,386,184)**
- **Genotypes Dec/2016 (392,999) → 91,075 → Dec/2017 (484,074)**
Correlations among predictions one year later

Correlation Dec/2016 - Dec/2017

All: 0.99 0.99
Own records: 0.99 1.00
No own records: 0.99 0.99
New records: 0.99 0.97
No new records: 0.99 1.00
Young: 0.99 1.00

Corr_GEBV
Corr_EBV
Distribution of differences of predictions

Minor changes, close to zero for 50% of animals

Outliers shown larger changes

Average changes greater for GEBV

Maximum changes greater for EBV

Changes are expressed in additive genetic standard deviation units
Distribution of differences of predictions over a year

![Graph showing distribution of differences over a year](image-url)
Average (maximum) changes in predictions over a year

<table>
<thead>
<tr>
<th>Contrast</th>
<th>Genotyped animals</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Records</td>
<td>No records</td>
<td>New records</td>
<td>No new records</td>
<td>Young</td>
</tr>
<tr>
<td>Dec/2016-Jan/2017_EBV</td>
<td>0.02(2.20)</td>
<td>0.02(2.20)</td>
<td>0.01(0.70)</td>
<td>0.04(2.20)</td>
<td>0.02(1.15)</td>
<td>0.02(0.70)</td>
</tr>
<tr>
<td>Dec/2016-Jan/2017_GEBV</td>
<td>0.05(0.88)</td>
<td>0.05(0.88)</td>
<td>0.04(0.25)</td>
<td>0.05(0.88)</td>
<td>0.05(0.45)</td>
<td>0.05(0.25)</td>
</tr>
<tr>
<td>Dec/2016-Dec/2017_EBV</td>
<td>0.06(2.95)</td>
<td>0.06(2.95)</td>
<td>0.04(1.44)</td>
<td>0.12(2.95)</td>
<td>0.05(1.39)</td>
<td>0.05(0.69)</td>
</tr>
<tr>
<td>Dec/2016-Dec/2017_GEBV</td>
<td>0.10(1.59)</td>
<td>0.10(1.59)</td>
<td>0.10(0.53)</td>
<td>0.11(1.59)</td>
<td>0.10(0.75)</td>
<td>0.10(0.53)</td>
</tr>
</tbody>
</table>

Changes are expressed in additive genetic standard deviation units.
Average (maximum) changes in predictions over a year

Changes are expressed in additive genetic standard deviation units.

<table>
<thead>
<tr>
<th>Contrast</th>
<th>Genotyped animals</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Records</td>
<td>No records</td>
<td>New records</td>
<td>No new records</td>
<td>Young</td>
</tr>
<tr>
<td>Dec/2016-Jan/2017_EBV</td>
<td>0.02 (2.20)</td>
<td>0.02 (2.20)</td>
<td>0.01 (0.70)</td>
<td>0.04 (2.20)</td>
<td>0.02 (1.15)</td>
<td>0.02 (0.70)</td>
</tr>
<tr>
<td>Dec/2016-Jan/2017_GEBV</td>
<td>0.05 (0.88)</td>
<td>0.05 (0.88)</td>
<td>0.04 (0.25)</td>
<td>0.05 (0.88)</td>
<td>0.05 (0.45)</td>
<td>0.05 (0.25)</td>
</tr>
<tr>
<td>Dec/2016-Dec/2017_EBV</td>
<td>0.06 (2.95)</td>
<td>0.06 (2.95)</td>
<td>0.04 (1.44)</td>
<td>0.12 (2.95)</td>
<td>0.05 (1.39)</td>
<td>0.05 (0.69)</td>
</tr>
<tr>
<td>Dec/2016-Dec/2017_GEBV</td>
<td>0.10 (1.59)</td>
<td>0.10 (1.59)</td>
<td>0.10 (0.53)</td>
<td>0.11 (1.59)</td>
<td>0.10 (0.75)</td>
<td>0.10 (0.53)</td>
</tr>
</tbody>
</table>
Average (maximum) changes in predictions over a year

<table>
<thead>
<tr>
<th>Contrast</th>
<th>Genotyped animals</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Records</td>
<td>No records</td>
<td>New records</td>
<td>No new records</td>
<td>Young</td>
<td></td>
</tr>
<tr>
<td>Dec/2016-Jan/2017_EBV</td>
<td>0.02(2.20)</td>
<td>0.02(2.20)</td>
<td>0.01(0.70)</td>
<td>0.04(2.20)</td>
<td>0.02(1.15)</td>
<td>0.02(0.70)</td>
<td></td>
</tr>
<tr>
<td>Dec/2016-Jan/2017_GEBV</td>
<td>0.05(0.88)</td>
<td>0.05(0.88)</td>
<td>0.04(0.25)</td>
<td>0.05(0.88)</td>
<td>0.05(0.45)</td>
<td>0.05(0.25)</td>
<td></td>
</tr>
<tr>
<td>Dec/2016-Dec/2017_EBV</td>
<td>0.06(2.95)</td>
<td>0.06(2.95)</td>
<td>0.04(1.44)</td>
<td>0.12(2.95)</td>
<td>0.05(1.39)</td>
<td>0.05(0.69)</td>
<td></td>
</tr>
<tr>
<td>Dec/2016-Dec/2017_GEBV</td>
<td>0.10(1.59)</td>
<td>0.10(1.59)</td>
<td>0.10(0.53)</td>
<td>0.11(1.59)</td>
<td>0.10(0.75)</td>
<td>0.10(0.53)</td>
<td></td>
</tr>
</tbody>
</table>

Changes are expressed in additive genetic standard deviation units
Average(maximum) changes in predictions over a year

Changes are expressed in additive genetic standard deviation units.
Conclusions

- The genomic evaluations are stable over a year because of large historical data and limited new data.
Thank you!!!