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Materials and Methods
Pedigree, performance recording, and genotypes up to 2014 were obtained for the US Holstein population from the 
USDA. Sires of animals born after 2010 and females with type traits measured in 2012 and 2013 were chosen as selected 
candidates – animals that would have been considered as breeding animals in 2014. This totaled 20,990 animals. K-
means clustering was performed on the genomic relationship matrix to identify clusters (C1, C2, C3, C4, C5).  The blupf90 
family software were used for further analyses (Misztal et al. 2014). A GWAS for stature was performed within each 
cluster or with all combined. Indirect genomic predictions (IGP) were obtained for male animals of each cluster when 
using SNP effects obtained using the females of each cluster. Animals were ranked based on these different IGP. The 
genetic correlations between the clusters were calculated as the correlation between the five different IGP of the males in 
each cluster adjusted using the method by Calo et al. (1973). This is an adjusted version of the method by Duenk et al. 
(2020). Hypothetical matings were performed to determine the expected inbreeding of offspring if males from a specific 
cluster were mated to females from each cluster. Higher inbreeding was expected within cluster. The fixation index was 
calculated for each SNP marker using the formula 𝐹!" =
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, where p is a vector containing the mean allele frequency 

across the five clusters and the numerator is the sampling variance of the allele frequency of each SNP across clusters 
(Wright, 1943). Five families were formed from the respective clusters (F1,F2 F3, F4, F5) by tracing parents back for ten 
generations (G0, G1,…,G10). The allele frequency (AF) of each SNP was calculated for each generation within a family. To 
see changes over time, specific SNP markers were identified to plot. Figures show the changes in allele frequency over 
time for the selected SNP and the 20 nearest SNP markers. This included DGAT1 due to its known importance in the dairy 
population, the SNP with the greatest variance of change across families, and the SNP with the greatest range between the 
family with the least change and the family with the greatest change. The replicate frequency spectrum was used to 
evaluate whether SNP changed differently within families (Barghi et al. 2019). The 100 SNP markers with the greatest 
absolute change were identified within each family. Of these sets of 100 SNP markers, those that have changed by more 
than 0.30 were identified in each separate family.
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Table 1: The ranking of specific bulls based on indirect genomic predictions of stature 
when SNP effects are based on different groups
Bull 
cluster

Cluster SNP effects were based on
Name All C1 C2 C3 C4 C5

Cluster 1 Doorman 43 158 825 871 152 777
Cluster 2 Airlift 1 101 3 64 44 276
Cluster 3 Edison 21 94 15 1 233 50
Cluster 4 Chuckie 12 892 173 26 1 234
Cluster 5 Monreal 2 46 97 140 30 2

The existence of sub-populations within a breed can help maintain trait variation and genetic diversity. This is important for 
long-term genetic gain, as well as the ability to adapt to changes in the environment and consumer demands. The extensive use 
of reproductive biotechnology in the dairy industry has led to higher inbreeding levels and concern about the loss of diversity.
Genetic redundancy is a phenomenon where an excess of beneficial variants exist, which allows multiple genetic pathways to 
achieve the same phenotype (Goldstein & Holsinger, 1992). Quantitative traits are affected by many different genes, each with a 
small contribution to the trait expression, which enables genetic redundancy. This can allow sub-populations to change 
differently over time, which in turn, maintains underlying genetic diversity. The objectives of this study were to identify sub-
populations within the US Holstein breed, determine whether these population-specific SNP effects could change the ranking 
of animals, and observe genetic redundancy (non-parallel changes) over time. 

Introduction

Genetic redundancy

Figure 4: The Replicate Frequency Spectrum approach identifies markers that have changed similarly across families. Each 
diagram contains the 100 SNP markers that have changed the most in a particular family (here Families 1, 2, and 4). The 
diagrams identify the number of these markers that have changed allele frequency (AF) by more than 0.30 in the different 
families. In all scenarios other than Family 4, there are more than 12 markers that have changed by more than 0.30 in only the 
family the criteria was based on. All scenarios have fewer than 20 markers that have changed at the same rate in all families. 

Results and Discussion
The average within-cluster inbreeding is generally higher (from 0.10 to 0.22) than across-
cluster (from 0.10 to 0.12). Cluster 4 consistently produced low inbreeding within and across 
clusters. This is the largest cluster, containing those that remain after more distinct clusters 
have formed. It contains enough diversity within itself to allow low inbreeding. The average Fst
of all SNP markers across the five clusters was 0.03, which is approximately half of what was 
found across three French dairy breeds (Flori et al. 2009). Figure 2 shows the significance level 
of the Fst of each marker. Although none reached significance, a few came close. 
Each pair of clusters has two values for genetic correlations – one when SNP effects from 
cluster X is used to predict cluster Y, and one when cluster Y is used to predict cluster X. The 
average genetic correlations between clusters was 0.75, but varied from 0.41 to 0.99. 
Performing GWAS in separate clusters delivered different results. However, among the 20 SNP 
with the greatest effect in each cluster, only chromosome 5 was common to all. Table 1 shows 
that considerable reranking occurred when using different SNP effects. Based on such 
reranking, it may not be appropriate to evaluate the whole US Holstein population together. 
Potential GxE interactions and different regional breeding objectives should be accommodated 
for.
Between 22 to 59 SNP markers reached fixation within a family, but only three did so in the 
overall population. This shows that, although separate lines can lose genes that might be 
important in the future, they could still be retained in the overall population and 
reincorporated at a later stage if necessary. Non-parallel changes in allele frequency over time 
was observed, both visually using selected SNP (Fig 3) and using the RFS (Fig 4). Visual 
inspection reveals changes surrounding the selected SNP that reflect hitchhiking, potential 
epistatic effects, and different selection pressure

Conclusions
Genetic redundancy is a powerful phenomenon that can allow long-term selection while still 
maintaining diversity within the population. This can allow companies to develop their own 
genetic lines for the same breeding objectives without leading to detrimental effects in the 
overall US Holstein population. These different lines can be crossed in future if genetic 
variation decreases in a single line.

Figure 1: The first three principal components of the 
genomic relationship matrix

Figure 2: The significance of the Fixation Index (Fst) for 
each SNP across clusters

Figure 3: The changes in allele frequencies over time for 
selected SNP markers (in blue) and the 20 surrounding SNP 
markers (in red) over 10 generations within each family
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