## How horn flies could be affecting your beef herd's reproductive success?

Amanda Warner<sup>1</sup>, Nancy Hinkle<sup>2</sup>, Bradley Heins<sup>3</sup>, Dean Pringle<sup>4</sup>, Samuel Aggrey<sup>5</sup>, and Romdhane Rekaya<sup>1</sup>

<sup>1</sup>Department of Animal Science; University of Georgia
<sup>2</sup>Department of Entomology; University of Georgia
<sup>3</sup>College of Veterinary Medicine; University of Georgia
<sup>4</sup>Institute of Food and Agricultural Sciences; University of Florida
<sup>5</sup>Department of Poultry Science; University of Georgia



#### **Introduction**

- Horn Fly
  - Obligate Blood Feeder
  - 20-38 blood meals per day
  - 1.5 mg
- Large Geographical Range
- Most prevalent ectoparasite on pastured cattle
- Current Methods of Control



![](_page_1_Picture_9.jpeg)

# Over a billion dollars

of economic loss in the United States annually

![](_page_2_Picture_2.jpeg)

![](_page_2_Picture_3.jpeg)

#### Introduction – Impact on Cattle

Stress

- Increased heart and respiratory rates
- Infection
  - Skin
  - Mastitis
- Production
  - Growth Rate reduced by up to 0.5 lbs per day
  - Reduced Grazing Time
  - Weaning weights
  - Milk production

![](_page_3_Picture_11.jpeg)

![](_page_3_Picture_12.jpeg)

#### **Reproduction**

- Reproduction can be impacted by...
  - Stress (Lucy, 2019)
  - BCS (Pryce, Coffey, and Simm, 2001)
- Lower reproduction due to disease (American Cattleman, 2023)
- Similar Pregnancy Rates between control and treatment (DeRouen et al., 2003)

![](_page_4_Picture_6.jpeg)

![](_page_4_Picture_7.jpeg)

![](_page_5_Picture_0.jpeg)

# To assess the impact of horn flies on the reproductive performance of beef cattle heifers and cows

## Success of first insemination

### Calving success after two inseminations

![](_page_5_Picture_4.jpeg)

#### **Data Collection**

- Historic Insemination and calving data (2015 2022)
  - Northwest Georgia Research and Education Center
  - 2088 records on 821 animals
- 2 insemination events and calving
  - All animals were placed on timed ai protocol prior to first insemination
  - Outcomes recorded as binary trait
  - Still births recorded as success
- 2019 and 2022 (No Fly Control was used)
  - Images at 2 time points were used to estimate fly abundance
- 2015-2018 and 2020-2021 (Pyrethrin Spray)
  - Not evaluated for fly abundance

#### Horn fly treatment timeline

![](_page_7_Figure_1.jpeg)

![](_page_7_Picture_2.jpeg)

#### **Results**

|                       | Years with Horn Fly Control |                             |         | Years without Horn Fly<br>Control |                             |         |
|-----------------------|-----------------------------|-----------------------------|---------|-----------------------------------|-----------------------------|---------|
|                       | 1 <sup>st</sup><br>Breeding | 2 <sup>nd</sup><br>Breeding | Calving | 1 <sup>st</sup><br>Breeding       | 2 <sup>nd</sup><br>Breeding | Calving |
|                       | Attempt                     | Attempt                     |         | Attempt                           | Attempt                     |         |
| Total # of<br>Animals | 1536                        | 753                         | 1530    | 533                               | 275                         | 524     |
| # of<br>Successes     | 827                         | 517                         | 1297    | 259                               | 191                         | 426     |
| Success<br>Rate       | 0.538                       | 0.703                       | 0.848   | 0.486                             | 0.695                       | 0.814   |

![](_page_8_Picture_2.jpeg)

#### **Results- AI and NS**

|              | Years witl         | n Horn Fly | Years without Horn Fly |         |  |
|--------------|--------------------|------------|------------------------|---------|--|
|              | Con                | trol       | Control                |         |  |
|              | Artificial Natural |            | Artificial             | Natural |  |
|              | Insemination       | Service    | Insemination           | Service |  |
| Total # of   | 1770               |            | <b>F90</b>             | 222     |  |
| Animals      | 1//8               | 407        | 580                    |         |  |
| # of         | 075                | 201        | 205                    | 155     |  |
| Successes    | 975                | 301        | 295                    | 155     |  |
| Success Rate | 0.55               | 0 772      | 0 500                  | 0.683   |  |
|              | 0.55               | 0.775      | 0.303                  | 0.005   |  |

![](_page_9_Picture_2.jpeg)

![](_page_10_Figure_0.jpeg)

**UNIVERSITY OF GEORGIA** 

![](_page_11_Figure_0.jpeg)

**UNIVERSITY OF GEORGIA** 

#### **Results – Fly Count Classes**

| 2019 Conception and Calving R | ates |
|-------------------------------|------|
|-------------------------------|------|

|      | Horn fly Control     |                                      |         | No Horn Fly Control  |                                      |         |
|------|----------------------|--------------------------------------|---------|----------------------|--------------------------------------|---------|
|      | 1₅ Breeding<br>Event | 2 <sup>nd</sup><br>Breeding<br>Event | Calving | 1₅ Breeding<br>Event | 2 <sup>nd</sup><br>Breeding<br>Event | Calving |
| Low  | 0.571                | 0.939                                | 0.952   | 0.453                | 0.841                                | 0.751   |
| Med  | 0.597                | 0.934                                | 0.941   | 0.485                | 0.871                                | 0.806   |
| High | 0.612                | 0.953                                | 0.961   | 0.55                 | 0.869                                | 0.844   |
| All  | 0.596                | 0.942                                | 0.952   | 0.496                | 0.86                                 | 0.801   |

![](_page_12_Picture_3.jpeg)

#### **Results – Fly Count Classes**

2022 Conception and Calving Rates

|      | Horn Fly Control         |                                      |         | No Horn Fly Control      |                                      |         |
|------|--------------------------|--------------------------------------|---------|--------------------------|--------------------------------------|---------|
|      | 1₅t<br>Breeding<br>Event | 2 <sup>nd</sup><br>Breeding<br>Event | Calving | 1₅t<br>Breeding<br>Event | 2 <sup>nd</sup><br>Breeding<br>Event | Calving |
| Low  | 0.63                     | 0.988                                | 0.993   | 0.588                    | 0.946                                | 0.886   |
| Med  | 0.614                    | 0.982                                | 0.994   | 0.542                    | 0.934                                | 0.886   |
| High | 0.612                    | 0.988                                | 0.989   | 0.502                    | 0.9                                  | 0.833   |
| All  | 0.619                    | 0.986                                | 0.992   | 0.544                    | 0.927                                | 0.868   |

![](_page_13_Picture_3.jpeg)

#### Effect of HF abundance on daughter pregnancy rate among sire families

![](_page_14_Figure_1.jpeg)

Sire Family Avg Region Count

#### **Conclusions**

- Use of Horn Fly Control shows potential improvement on
  - Success of 1st breeding
  - Overall Calving Rates
  - Conception rates associate with AI and NS
- Every fly abundance class shows higher conception and calving rates when treated for horn flies
  - High horn fly count does not always indicate lower success rates
- Lower horn fly counts correlated with high daughter pregnancy rates
- Injury Thresholds should be evaluated on an individual basis to determine onset of decay of reproductive performance
- Further research should be conducted on possible reproductive impacts

![](_page_15_Picture_10.jpeg)

## Thank you!

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_16_Picture_3.jpeg)