Comparison of algorithms for approximation of accuracies in ssGBLUP

Pedro Ramos, A. Garcia, K. Retallik, M. Bermann, I. Misztal, D. Lourenco

ASAS- July 2023

Introduction

ACC:

.56

60%

41

.86

40%

361

.81

15%

260

111

	Maternal										
	HP	CEN	1 🛛 🔊	1ilk	MkH	М	W	N	4H	\$EN	
	Acc	Aco	: /	Acc	MkD	Α	cc	4	lcc		
	%	%		%		9	6		%	%	
	Daus	Dau	s			Pr	og	Р	rog		
EPD:	+19.4	+10) +	+19		+59		-	4	-11	
ACC:	.29	.34	· · · ·	35		.43		.45			
	2%	35%	35% 9			55%		45%		45%	
	Production										
	CED	BW	ww	YW	RADG		DM		YH	SC	
	Acc	Acc	Acc	Acc	Acc		Acc		Acc	Acc	
	%	%	%	%	%		%		%	%	
	Prog	Proa	Prog	Prog	Prog		Pro	1	Prog	Prog	
EPD:	+5	+.8	+78	+140	+.27		+1.7	8	+.7	03	

.65

15%

64

.40

30%

.40

95%

.53

30%

.60

95%

15

Introduction

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z} \\ \mathbf{Z}'\mathbf{X} & \mathbf{Z}'\mathbf{Z} + \mathbf{A}^{-1}\boldsymbol{\alpha} \end{bmatrix} \begin{bmatrix} \mathbf{\hat{b}} \\ \mathbf{\hat{a}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{Z}'\mathbf{y} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{12} \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} \longrightarrow \mathbf{C}^{-} = \begin{bmatrix} \mathbf{C}_{21}^{11} & \mathbf{C}_{21}^{12} \\ \mathbf{C}_{21}^{22} \end{bmatrix} \bigoplus \mathbf{PEV} = \operatorname{Var} (\mathbf{g} - \mathbf{\hat{g}}) = \mathbf{C}_{22}^{22} \mathbf{\sigma}_{e}^{2}$$
$$BIF_{accuracy} = 1 - \sqrt{\frac{PEV}{(1 + F_{i})\sigma_{u}^{2}}}$$

Introduction

- Complex Models:
- Single-Step GBLUP:
 - Genomic and pedigree information combined (H^{-1}) in a single method

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z} \\ \mathbf{Z}'\mathbf{X} & \mathbf{Z}'\mathbf{Z} + \mathbf{H}^{-1}\mathbf{\alpha} \end{bmatrix} \longrightarrow \mathbf{C}^{-} = \begin{bmatrix} \mathbf{W} \end{bmatrix}$$

- Methods of approximating accuracy
 - Obtain the PEV without setting up the mixed model equations
 - Provide a feasible calculation of the genomic contribution

- Compare two algorithms for approximation of accuracies:
- 1) Compare approximated accuracies between algorithms

ACCF90GS2

2) Compare approximated and accuracies from the inverse of MME

3) Impact of adding new genotyped animals in the approximated accuracies

ACCF90GS

ACCF90GS

$$\mathbf{d}_{i}^{g} = \alpha * \left[\overline{\text{REL}} + (1 - g_{ii}) + Z * \left(\overline{\text{REL}} - \overline{\text{REL}}_{pa}\right)\right]$$

- α = ratio of residual variance to animal genetic variance
- REL = average of reliability based on pedigree
- (1-gii) = genomic information for the animal *i*
- Z = adjustment factor defined as: $\left(\frac{\text{Genotyped individuals}}{100} * 0.1\right)$
- REL_{pa} = average reliability based on the pedigree of genotyped animals with phenotype
- $REL REL_{pa}$ = contribution from phenotypes of genotyped animals

• Block sparse inversion of G^{-1} computed by the APY method:

$$diag(\mathbf{Z}'\mathbf{Z} - \mathbf{Z}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Z} + \mathbf{G}_{APY}^{-1})^{-1} \approx diag(\mathbf{W} + \mathbf{G}_{APY}^{-1})^{-1}$$

Data sets

- Dataset:
 - 9.7M Birth weight (BW)
 - 10.1M Weaning weight (WW)
 - 4.9M Postweaning gain (PWG)
 - 132k Carcass weight (CWT)
 - 132k Fat (FAT)
 - 132k Marbling (MARB)
 - 132k Ribeye area (RIB)
 - 2.2M Ultrasound fat (UFAT)
 - 2.2M Ultrasound Ribeye (URIB)
 - 2.6M Weight at ultrasound time (USWT)
 - 2.2M Ultrasound intramuscular fat (UIMF)
 - 1.2M Genotyped animals
 - 4.3M 12.5M animals in pedigree

- Subset of data:
- 31k 132k records per trait
- 177k -534k animals in pedigree
- 30k 50k Genotyped animals

Results

UNIVERSITY OF GEORGIA

Comparison between approximated and exact accuracies

Evaluation of the impact of adding genotyped animals in the approximated accuracies

Scenario 1= inclusion of 10,000 genotyped animals with phenotype; Scenario 2= inclusion of 10,000 genotyped animals without phenotype; Scenario 3= no inclusion of animals.

Take home messages

- Approximated accuracies from accf90GS2 are closer to the exact accuracies
- More suitable for approximating accuracies in large-scale routine evaluations
- Computing time may still be challenging
- Adding genotyped animals without phenotypes slightly increases overall accuracy
- Largest impact on the mean is when adding genotyped animals with phenotypes

THANK YOU!

Pedro Vital Brasil Ramos

pv11222@uga.edu