Improving the efficiency of heritability estimation with genomic information – Method R

Mary Kate Hollifield, J. Hidalgo, F. Bussiman, D. Lourenco, I. Misztal

Department of Animal and Dairy Science, University of Georgia, Athens, GA

ADSA Annual Meeting - June 28th, 2023

College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA

Why is VCE expensive?

- REML (Patterson and Thompson, 1971)
 - Requires inversion of the LHS of MME
 - Becomes too expensive or unattainable
- Bayesian via Gibbs sampling
 - Costly with GS \rightarrow dense MME matrices
- APY (Misztal et al., 2014)
 - Limited success in REML (Junqueira et al., 2022)

Change in VCE over time

ANIMAL GENETICS AND GENOMICS

Changes in genetic parameters for fitness and growth traits in pigs under genomic selection

Jorge Hidalgo,^{†,1} Shogo Tsuruta,[†] Daniela Lourenco,[†] Yutaka Masuda,[†] Yijian Huang,[‡] Kent A. Gray,[‡] and Ignacy Misztal[†]

[†]Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, [‡]Smithfield Premium Genetics, Roanoke Rapids, NC 27870

- Selection decreases heritability over time
- Reason for routine VCE updates
- Heritability may be different with genomics

GT1

- Compare heritability estimation with genomic information using AIREML and Method R
- Reduce computing expense of heritability estimation with large \bullet genomic models

$$E[b_{w,p}] = \frac{E[\widehat{\boldsymbol{u}}'_w \widehat{\boldsymbol{u}}_p]}{E[\widehat{\boldsymbol{u}}'_p \widehat{\boldsymbol{u}}_p]} = 1$$

 $b_1 > 1$: heritability underestimated $b_1 < 1$: heritability overestimated

Materials and Methods

- QMSim 10 non-overlapping generations, 5,000 animals each
- $h^2 = 0.3$, all genotyped at 50k SNP
- External genomic selection by GBLUP

•
$$\mathbf{y} = \mathbf{u} + \mathbf{e}$$
; $\operatorname{Var}\begin{bmatrix}\mathbf{u}\\\mathbf{e}\end{bmatrix} = \begin{bmatrix}\mathbf{G}\sigma_a^2 & 0\\ 0 & \mathbf{I}\sigma_e^2\end{bmatrix}$

- Replacement ratios:
 - Sires = 0.9
 - Dams = 0.4

Heritability Estimation

- Method R
 - Partial dataset: most recent generation
 removed

•
$$\lambda = \frac{\sigma_e^2 + (\sigma_a^2 - x)}{x}$$

- x = 1.5, 2.0, 2.5, 3.0, 3.5, or 4.0
- σ_e^2 and σ_a^2 from GREML
- AIREML (blupf90+; Misztal et al., 2014)
 - GBLUP and PBLUP model

• $\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z} \\ \mathbf{Z}'\mathbf{X} & \mathbf{Z}'\mathbf{Z} + \lambda\mathbf{G}^{-1} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\boldsymbol{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{Z}'\mathbf{y} \end{bmatrix}$

• Var
$$\begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{e} \end{bmatrix} = \begin{bmatrix} \mathbf{G}\sigma_a^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{I}\sigma_e^2 \end{bmatrix}$$

•
$$b_1 = \frac{\widehat{u}'_w \widehat{u}_p}{\widehat{u}'_p \widehat{u}_p} = 1$$

Results

Animal Breeding and Genetics Group College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA

Animal Breeding and Genetics Group College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA

Conclusions

- Method R: short computing time and relatively low expense
- Estimates are not as precise as GREML
- More research needed in:
 - Real populations
 - Multiple-trait models
 - Additional random effects

Thank You!

UNIVERSITY OF GEORGIA.

Animal Breeding and Genetics Group

College of Agricultural & Environmental Sciences

UNIVERSITY OF GEORGIA

marykate.hollifield@uga.edu