

Improving computing performance of genomic evaluations by genotype and phenotype truncation

Fernando Bussiman, C. Chen, J. Holl, A. Legarra, I. Misztal, and D. Lourenco

Animal Breeding and Genetics Group

College of Agricultural & Environmental Sciences

UNIVERSITY OF GEORGIA

ΡΙ

UNIVERSITY OF GEORGIA

Introduction

- Large data collection: past x current
- > More data, more computing power needed
- Same model to historical and current data may be wrong
- Objective:
 - Investigate data truncation to reduce genomic prediction computing costs
 - > young animals
 - as accurate as non-truncated

Truncation Scenarios

> Data truncation is usually applied to phenotypes and pedigree

> should we use all the genotyped animals?

- > noInfo: genotyped animals without own and progeny phenotypes were removed
- > Age: old genotyped animals were removed
- > nolnfo + Age: combination of nolnfo and Age scenarios
- > Allgen: no genotyped animal was removed
- > Phenotypes were removed every three years
- > Three pedigree depths: 2 and 3 generations back or the entire pedigree

Truncation Scheme

2010 2011 2012 2013 2014 2015 2016 2	2017 2018 2019 2020 2021 2022 202	23
--------------------------------------	-----------------------------------	----

Plus, up to 3 generations of pedigree 2016 2017 2018 2019 2020 2021 2022 2022

Plus, up to	3	generations of pedigree	201

2019 20	020 2021	2022	2023
---------	----------	------	------

Plus, up to 3 generations of pedigree

Datasets Provided

➢ 2 pig lines:

Terminal Sire – Growth (ADG and BF) and Mortality (WFM)

- > > 300K records
- > 160K genotyped
- ➢ 3.6M pedigree

Maternal – Reproductive (LS and NS) and Pre-weaning (BW and PWM)

- > > 500K records
- > 170K genotyped
- 11M pedigree

UNIVERSITY OF GEORGIA

PI(

Validation

> Males and females born in 2019 and subsequent years

Phenotyped progeny

≻ LR

➢ Reliability

Dispersion bias

Growth traits - Terminal Sire line

← Age ← AllGen ← noInfo ← noInfo + Age

Mortality - Terminal Sire line

--- Age --- AllGen --- noInfo --- noInfo + Age

Preweaning traits - Maternal line

--- Age --- AllGen --- noInfo --- noInfo + Age

Reproductive traits - Maternal line

--- Age --- AllGen --- noInfo --- noInfo + Age

Number of Iterations

- \blacktriangleright A positive "side effect"
 - \geq 90% gain in efficiency!
 - Not compromising accuracy

--- non-truncated dataset

Iter

Conclusions

> Tracing up to three generations in the pedigree is enough

Data truncation can cause a slight drop in accuracy
If genotyped animals have no phenotypes

Removing unneeded information increases computing efficiency
without compromising genomic predictions

UGA – ABG Group http://nce.ads.uga.edu

Acknowledgements

