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Recent projects

• Blupf90 software
• Convergence improvements

• Case of #phenotypes << # animals
• Multiple categorical traits with large data
• P-values in GWAS with national data sets

• Applications
• Implementation in dairy
• Canalization for disease resistance

• Potential negative effects of genomic selection
• Parameter estimation with large data
• Explaining peculiarities of GWAS



What Manhattan plots show? 
QTLs and sequence data

Ignacy Misztal, Ivan Pocrnic*, Daniela Lourenco

University of Georgia

*now Roslin Institute



Peculiarities of QTL detection - GWAS

• Lots of QTLs detected with small data sets

• Fewer QTLs detected with large data 

• GWAS by 

– % of variance explained usually per 1Mb

– p-values  

• Few regions explain > 1% additive variance

• Little or no gain with sequence data for ssGBLUP with 
commercial data



Estimated heritability 36% (normally 1%)

Identified 146 unique loci at p < 5 × 10−8 level

Galliou et al., 2020, https://doi.org/10.3390/genes11070767

First conception rate on 2k Holstein heifers



Jiang et al., 2019

doi: 10.3389/fgene.2019.00412

GWAS on 294k Holstein cows



Manhattan plots for simulated population with 100 identical 
equidistant QTNs

Expectation Based on SNP values
Based on p-values

Work started by Pocrnic et al. (2018)



Plots averaged for 100 QTN

R2=0.89

Pairwise linkage disequilibrium
curve

~ 2 Mb for cattle
~ 5 Mb for pigs/chickens

1/Ne Morgans for 80% QTN variance
   Ne - effective population size 

~ 15 kb for humans



What is Manhattan plot composed of? 

QTNs

Combined

Relationships

Noise

Bigger with larger QTN
and larger data

Smaller with more data



Why ssGBLUP accounts for QTN?

SNPs cover QTN LD curve



P-values for GWAS in (ss)GBLUP

𝑝𝑣𝑎𝑙𝑖 = 2 1 − Φ
ෞ𝑠𝑛𝑝𝑖

𝑠𝑑 ෞ𝑠𝑛𝑝𝑖
   (Chen et al., 2017)

If 𝑠𝑑 ෞ𝑠𝑛𝑝𝑖  approximately constant, Manhattan plots based on | ෞ𝑠𝑛𝑝𝑖| and 
𝑝𝑣𝑎𝑙𝑖 similar

Large data – PEV from accuracy approximations (Bermann et al., 2021)



12Leite et al., 2023

50k genotyped animals 500k genotyped animals

Post-weaning gain in American Angus



Sequence data

13

Jang et al., 2023

0.46 0.46 0.470.46 0.46 0.47

Chip Top40k Chip+Sign

Accuracy

Single Multi

• 207k pigs with sequence

• 5M pedigree

• 1.5M records

• Single and multi-breed



Distribution of QTL effects
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Detection threshold

Unselected populations

After many round of selection



Milk – first parity

Mortality – first parity

GWAS using 35k Holstein bulls

(Tokuhisa et al, 2014; 
Tsuruta et al., 2014)



GWAS for various traits and index in pigs
       Bijma, EAAP 23

Index

• Different peaks in different lines
• Antagonistic pleiotropy



Conclusions for GWAS

• QTN profile wide with small effective population size

• Large signals in GWAS due to QTN, relationships and 
noise (incl.  Imputation)

• Most QTNs probably below detection limit

• ssGBLUP accounts for QTL with large data



Positive and Negative Impacts of 
Genomic Selection

Ignacy Misztal and Daniela Lourenco

University of Georgia



Negative effects of genomic selection

• Informal industry reports:

– Deteriorating sow survival and pig mortality in pigs

– Deteriorating feet & legs in beef

– Short teats and increased calf mortality in dairy

– Increased sensitivity to heat stress in dairy

– Deteriorating disease resistance across species

• Recessive genes or pleiotropy?



Genetic selection as optimization

• Selection for one trait or an index

• Gains on selected traits

• Losses on correlated antagonistic traits

• Losses compensated by improved environment/management



History of selection strategies

• Domestication

• Unformal 

• Large-scale single-trait for production traits

• Multi-trait with fitness traits

• Genomic



Domestication
Winners Losers

Growth
Milk
Mating procedures

Food finding
Seasonal reproduction
Predator avoidance 
Brain size
…



Zuidhof et al. (2014) http://dx.doi.org/10.3382/ps.2014-04291

Example of effects of mostly single-trait selection

1957                      1977                            2005

4 week

0 d

8 week



Side effects of intensive selection for growth in 
broiler chicken

• Unlimited appetite / obesity ➔ artificial lightning

• Poor survival of males ➔ male supplementation

• Increased susceptibility to diseases ➔ antibiotics

• Low hatchability ➔ alternate heating/cooling of incubators

• …

All companies – similar problems at same time

Initially problems kept confidential

Eitan and Soller, 2014



…over 100 references on undesirable(cor)related effects of selection … in 

broilers, pigs and dairy cattle….

Future application … DNA-techniques .. ….more dramatic consequences….

Selection for more than production traits alone may prevent such.



Miglior et al., 2017

Changes in US dairy index



Effects of genomic selection

• High accuracy for well recorded traits
• Low accuracy for low h2 traits with little information
• Lowered generation interval  

• Acceleration of trends for selected traits
• Acceleration of correlated responses

• Changes in genetic parameters



Production (high h2)

Raw fitness (low h2)

Management

Realized fitness 

Genomic

selection

Hypothetical trend changes in 3 stages of genetic selection

Single trait
selection

Multiple
trait 
selection



Production (high h2)

Raw fitness (low h2)

Management

Realized fitness 

Genomic

selection

… large data for fitness traits …

Single trait
selection

Multiple
trait 
selection



Selection and resource allocation theory

• Thresholds of minimum energy required for fitness, environment 
dependent (Van der Waaij, 2004; Rauw, 2012; Knapp, 2014)

• More energy for production ➔ fitness more antagonistic
• Genetic correlations ➔ -1

• h2 of selection index decline

• Fast selection ➔ unbalanced animals (Huber, 2015)



Problems and species

• Need large data for accurate evaluations

• Small fraction of fertility to performance records in some species
• ~ 1 in cattle

• 1/15 in pigs

• 1/200 in layers

• Problems with early mortality/morbidity when affected animals not 
genotyped 



Genomic gain for production and fitness traits 
– example in pigs
• 1000 sows per generation

• 15 piglets per sow

• 4 generations

• Gain per generation:
• 0.65 phenotypic SD for growth

• 0.02 phenotypic SD for number of born dead

• Genomic favors bigger populations with better recording



Changes in (co)variances in pigs due to genomic selection

Heritability for growth
Genetic correlation with reproduction

Hidalgo et al. (2019)

Heritability halved, antagonistic correlations -0.3 ➔ -0.5



Why changes in genetic parameters?

• Bulmer effect

• Changing resource allocation

• Changes in gene frequencies

• Changes in trait definitions

• G x E

• Recessives

• …



How to circumvent negative effects?

• Start or expand recording for problematic traits

• Have a realistic index
• Needs estimates for last generation

• Focus on traits where the parameters are changing rapidly
• Needs estimates for last generation



Possible changes in heritability

time

h2

good

bad



Possible changes in genetic correlations 

time

h2

acceptable

bad



Using theoretical and realized accuracies to estimate changes 
in heritabilities and genetic correlations

Ignacy Misztal

University of Georgia



How to estimate parameter change by 
generation?

• If REML/Gibss sampling
• Base population parameters

• Impossible computations with too many genotypes

• Biases with too few generations (Cesarani et al., 2019)

year

Data sampling in Hidalgo et al.(2019) 

Months of computing

Base population parameters



Requirements for new estimation

• All data including genomic

• Parameters by last generation/ year

• Reasonable computing cost

year

Hours of computing

Last generation parameters



Realized and theoretical accuracies

𝑎𝑐𝑐 =  𝑐𝑜𝑟𝑟 Τ𝑦 − 𝑋𝑏, ො𝑢 ℎ
Legarra et al. (2008)

y-Xb   - adjusted phenotype
ො𝑢 - breeding value obtained without 
 that phenotype
h2 - heritability

 

𝑎𝑐𝑐 =
𝑁ℎ2

𝑁ℎ2 + 𝑀𝑒

Daetwyler et al. (2008)

N – number of genotyped animals with phenotypes
Me – number of independent chromosome segments

Me ≈ 5k (chickens, pigs), 10k (beef), 15k (Holsteins)
               Pocrnic et al. (2017)

Realized accuracy

Theoretical accuracy



Pig data set
150k records on growth (h2=0.21)

25k records on fitness (h2=0.05)

53k genotyped animals 

Hollifield et al., 2021

53𝑘 ∗ 0.21

53𝑘 ∗ 0.21 + 5𝑘
= 0.83

25𝑘 ∗ 0.05

25𝑘 ∗ 0.05 + 5𝑘
= 0.44

growth fitness

Theoretical accuracy

Realized accuracy 0.82 0.41



Broiler chicken data set

820k phenotypes for growth

 h2=0.3

150k genotyped
Hidalgo et al., 2021

150𝑘 ∗0.3

150𝑘 ∗0.3+5𝑘
= 0.94Theoretical accuracy

Realized accuracy 0.58

Both accuracy same  0.89 if h2 = 0.13

Company was using 0.14! (Breen, 2022) 



Formulas for estimating heritability

ℎ2 =
𝑐2 + 𝑐4 + 4𝑐2𝑀𝑒/𝑁

2
, 𝑐 = 𝑐𝑜𝑟𝑟 𝑦 − 𝑋𝑏, ො𝑢

𝑆𝐸( ℎ2) ≈
1

𝑁𝑣𝑎𝑙
𝑐 +

2𝑐2+
4𝑀𝑒
𝑁

𝑐2+
4𝑀𝑒
𝑁

 )ℎ2 ≈
3𝑐

𝑁𝑣𝑎𝑙 

N – # animals in reference   Nval – number of animals in validation

ℎ2:
𝑁ℎ2

𝑁ℎ2 + 𝑀𝑒
=  𝑐𝑜𝑟𝑟 Τ𝑦 − 𝑋𝑏, ො𝑢 ℎ



Heritability for milk in Holsteins

# animals with phenotypes and 
genotypes

580k

# animals with validation 381k

Assumed # chromosome segments Me 15k

Initial h2 0.35

Calculated h2 0.33



How to estimate genetic correlations? 

…..
…..

𝑐𝑜𝑟𝑟 𝑦𝑖 − 𝑋𝑏𝑖 , ෝ𝑢𝑗  = 𝑎𝑐𝑐𝑗  𝑐𝑜𝑟𝑟𝑖𝑗  ℎ𝑖  

𝑐𝑜𝑟𝑟𝑖𝑗  =
𝑐𝑜𝑟𝑟 𝑦𝑖 − 𝑋𝑏𝑖 , ෝ𝑢𝑗

ℎ𝑖  𝑎𝑐𝑐𝑗 𝑆𝐷(𝑐𝑜𝑟𝑟𝑖𝑗)  ≈
1

ℎ𝑖  𝑎𝑐𝑐𝑗 𝑁𝑣𝑎𝑙 

Predictivity for trait i 𝑐𝑜𝑟𝑟 𝑦𝑖 − 𝑋𝑏𝑖 , ෝ𝑢𝑖  = 𝑎𝑐𝑐𝑖  ℎ𝑖  

𝑐𝑜𝑟𝑟 𝑦𝑖 − 𝑋𝑏𝑖 , ෝ𝑢𝑗 = ?What is predictivity from trait i to trait j?



Conclusions

• Potential negative effects of genomic selection on fitness traits
• faster correlated responses
• Potentially increased antagonism

• Need new methods to estimate genetic parameters – use of predictivity 
promising

• Response to QTL wide for pigs &  chickens– several Mb
• Probably false QTL if no LD trail
• ssGBLUP accounts for QTL with large data

• ”Good” large QTLs probably fixed, remaining show pleiotropy 



UGA AB&G team
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