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Recent projects

* Blupf9o0 software

* Convergence improvements

e Case of #phenotypes << # animals
* Multiple categorical traits with large data
e P-values in GWAS with national data sets

* Applications
* Implementation in dairy
e Canalization for disease resistance

* Potential negative effects of genomic selection
* Parameter estimation with large data
* Explaining peculiarities of GWAS



What Manhattan plots show?

QTLs and sequence data

lgnacy Misztal, Ivan Pocrnic*, Daniela Lourenco
University of Georgia
*now Roslin Institute



Peculiarities of QTL detection - GWAS

Lots of QTLs detected with small data sets
Fewer QTLs detected with large data

GWAS by

— % of variance explained usually per 1Mb

— p-values
Few regions explain > 1% additive variance

Little or no gain with sequence data for ssGBLUP with
commercial data



First conception rate on 2k Holstein heifers
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Estimated heritability 36% (normally 1%)

|dentified 146 unique lociat p <5 x 1072 level

Galliou et al., 2020, https://doi.org/10.3390/genes11070767



A Milk yield: additive effect
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Jiang et al., 2019

doi: 10.3389/fgene.2019.00412



Manhattan plots for simulated population with 100 identical
equidistant QTNs
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Average SNP Effect
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What is Manhattan plot composed of?
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Why ssGBLUP accounts for QTN?

SNPs cover QTN LD curve



P-values for GWAS in (ss)GBLUP

Snp;

pvali=2(1—d>(

T )) (Chen et al., 2017)

If sd(snp;) approximately constant, Manhattan plots based on |snp;| and
pval; similar

Large data — PEV from accuracy approximations (Bermann et al., 2021)



' Post-weaning gain in American Angus
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Sequence data

207k pigs with sequence

* 5M pedigree W
* 1.5Mrecords Jang et al., 2023
* Single and multi-breed
Accuracy
0.46 0.46 0.46 0.46 0.47 0.47

Chip Top40k Chip+Sign
M Single Multi



Gene effect

Distribution of QTL effects

Unselected populations

Detection threshold

After many round of selection
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GWAS using 35k Holstein bulls
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GWAS for various traits and index in pigs

Daily Gain; 33589 pigs

Chromosome number

Muscle Depth; 31885 pigs
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Conclusions for GWAS

QTN profile wide with small effective population size

* Large signals in GWAS due to QTN, relationships and
noise (incl. Imputation)

* Most QTNs probably below detection limit

* sSGBLUP accounts for QTL with large data



Positive and Negative Impacts of
Genomic Selection

lgnacy Misztal and Daniela Lourenco
University of Georgia



Negative effects of genomic selection

* Informal industry reports:
— Deteriorating sow survival and pig mortality in pigs
— Deteriorating feet & legs in beef
— Short teats and increased calf mortality in dairy
— Increased sensitivity to heat stress in dairy
— Deteriorating disease resistance across species

* Recessive genes or pleiotropy?



Genetic selection as optimization

Selection for one trait or an index
Gains on selected traits
Losses on correlated antagonistic traits

Losses compensated by improved environment/management



History of selection strategies

Domestication
Unformal

_arge-scale single-trait for production traits
Multi-trait with fitness traits

Genomic
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Example of effects of mostly single-trait selection
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Zuidhof et al. (2014) http://dx.doi.org/10.3382/ps.2014-04291



Side effects of intensive selection for growth in
broiler chicken
* Unlimited appetite / obesity = artificial lightning
* Poor survival of males =» male supplementation

* |ncreased susceptibility to diseases =2 antibiotics
* Low hatchability =» alternate heating/cooling of incubators

All companies — similar problems at same time
Initially problems kept confidential

Eitan and Soller, 2014



Undesirable side effects of selection for high production
efficiency 1n farm animals: a review
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...over 100 references on undesirable(cor)related effects of selection ... in
broilers, pigs and dairy cattle....

Future application ... DNA-techniques .. .... more dramatic consequences....

Selection for more than production traits alone may prevent such.



Relative emphasis (%)

Changes in US dairy index
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Effects of genomic selection

High accuracy for well recorded traits
Low accuracy for low h? traits with little information
_.owered generation interval

Acceleration of trends for selected traits
Acceleration of correlated responses

Changes in genetic parameters



Hypothetical trend changes in 3 stages of genetic selection
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... large data for fitness traits ...
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Selection and resource allocation theory

* Thresholds of minimum energy required for fitness, environment
dependent (Van der Waaij, 2004; Rauw, 2012; Knapp, 2014)

* More energy for production =2 fithess more antagonistic
* Genetic correlations = -1
* h? of selection index decline

* Fast selection =» unbalanced animals (Huber, 2015)



Problems and species

* Need large data for accurate evaluations

* Small fraction of fertility to performance records in some species

 ~1in cattle
e 1/15in pigs
e 1/200 in layers

* Problems with early mortality/morbidity when affected animals not
genotyped



Genomic gain for production and fitness traits
—example in pigs
* 1000 sows per generation

e 15 piglets per sow
* 4 generations

* Gain per generation:
* 0.65 phenotypic SD for growth
* 0.02 phenotypic SD for number of born dead

* Genomic favors bigger populations with better recording
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Changes in (co)variances in pigs due to genomic selection
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Why changes in genetic parameters?

* Bulmer effect
e Changing resource allocation

* Changes in gene frequencies
* Changes in trait definitions

e GXE
e Recessives



How to circumvent negative effects?

e Start or expand recording for problematic traits

* Have a realistic index
* Needs estimates for last generation

* Focus on traits where the parameters are changing rapidly
* Needs estimates for last generation



Possible changes in heritability
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Possible changes in genetic correlations
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Using theoretical and realized accuracies to estimate changes
in heritabilities and genetic correlations

Ignacy Misztal

University of Georgia



How to estimate parameter change by
generation?

* |f REML/Gibss sampling

e Base population parameters
* Impossible computations with too many genotypes
* Biases with too few generations (Cesarani et al., 2019)

Data sampling in Hidalgo et al.(2019)
—

o year
9%

Months of computing e

Base population parameters



Requirements for new estimation

 All data including genomic
* Parameters by last generation/ year
* Reasonable computing cost

—
year

O

Hours of computing

Last generation parameters



Realized and theoretical accuracies

Legarra et al. (2008)

Realized accuracy acc = corr (y — Xb,1)/h

Theoretical accuracy acc =

Nh?

\

Nh2 + M,

y-Xb - adjusted phenotype

il - breeding value obtained without
that phenotype

h? - heritability

Daetwyler et al. (2008)

N — number of genotyped animals with phenotypes
M, — number of independent chromosome segments

Me = 5k (chickens, pigs), 10k (beef), 15k (Holsteins)
Pocrnic et al. (2017)



Pig data set

150k records on growth (h?=0.21)
25k records on fitness (h?=0.05)

53k genotyped animals

Hollifield et al., 2021

growth
Theoretical accuracy 53k %021 \/ 25k *0.05 044
=3k » 021+ 5k 0083 25k *0.05+ 5k

Realized accuracy 0.82 0.41



Broiler chicken data set

820k phenotypes for growth
h?=0.3
150k genotyped

Theoretical accuracy 150k 03  _ §og
150k *0.3+5k

Realized accuracy 0.58

Both accuracy same 0.89 if h2=0.13

Company was using 0.14! (Breen, 2022)

e

" Hidalgo et al., 2021



Formulas for estimating heritability

h2. Nh” _ _ (y — Xb,0)/h
'\JNhZ‘FMe_ corr (y U
— c?+.Jcr+4c2M, /N
h? = \/ > e/ ,¢ = corr(y — Xb, 1)
SE(h?) =~ ~_|c+ e h2) ~ °C
vV Nval c2 .|_‘;VM9 vV Nval

N —# animals in reference N, — number of animals in validation



Heritability for milk in Holsteins

o SCIEN,
S74B%y; J. Dairy Sci. 104:5843-5853
ZAQME) - https:/idoi.org/10.3168/jds.2020-19789

%;“"’/5‘ © 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Genomic predictions for yield traits in US Holsteins
with unknown parent groups

A. Cesarani,”™ ® Y. Masuda,' ® S. Tsuruta,' ©® E. L. Nicolazzi,2 P. M. VanRaden,* ® D. Lourenco,' ®

and I. Misztal' ®

'Department of Animal and Dairy Science, University of Georgia, Athens 30602

2Council on Dairy Cattle Breeding, Bowie, MD 20716

Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350

# animals with phenotypes and

genotypes

# animals with validation 381k
Assumed # chromosome segments M, 15k

Initial h? 0.35
Calculated h? 0.33



How to estimate genetic correlations?

Predictivity for trait i corr(y; — Xb;, ;) = acc; h;

What is predictivity from trait i to trait j? corr(yi — Xb;, l/l})= ?

corr(yi — X bi,uj) = accj corry; hy

B corr(yl- — Xbl-,'a}-)
O = h; acc; SD(corr;) ~ -
L J h; accj [ Nyq




Conclusions

* Potential negative effects of genomic selection on fitness traits
 faster correlated responses
* Potentially increased antagonism

* Need new methods to estimate genetic parameters — use of predictivity
promising

e Response to QTL wide for pigs & chickens— several Mb
* Probably false QTL if no LD trail
* ssGBLUP accounts for QTL with large data

* "Good” large QTLs probably fixed, remaining show pleiotropy
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