Selected projects at University of Georgia

Ignacy Misztal and Daniela Lourenco University of Georgia

Recent projects

- Blupf90 software
 - Convergence improvements
 - Case of #phenotypes << # animals
 - Multiple categorical traits with large data
 - P-values in GWAS with national data sets
- Applications
 - Implementation in dairy
 - Canalization for disease resistance
- Potential negative effects of genomic selection
- Parameter estimation with large data
- Explaining peculiarities of GWAS

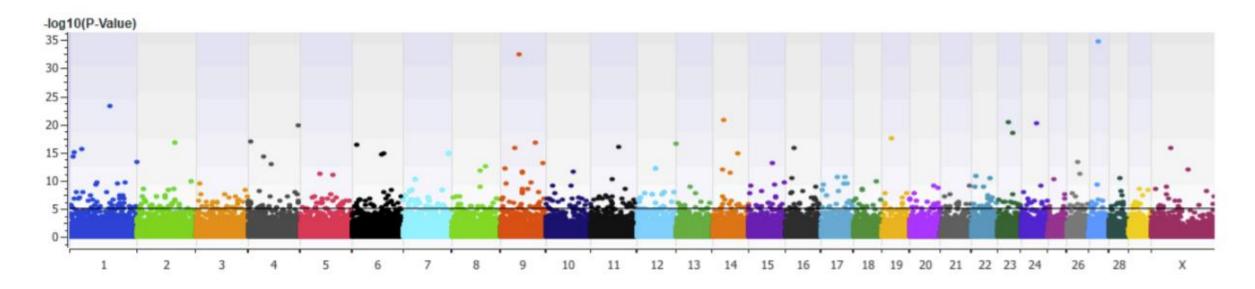
What Manhattan plots show? QTLs and sequence data

Ignacy Misztal, Ivan Pocrnic*, Daniela Lourenco University of Georgia *now Roslin Institute

Peculiarities of QTL detection - GWAS

- Lots of QTLs detected with small data sets
- Fewer QTLs detected with large data
- GWAS by
 - -% of variance explained usually per 1Mb
 - p-values
- Few regions explain > 1% additive variance
- Little or no gain with sequence data for ssGBLUP with commercial data

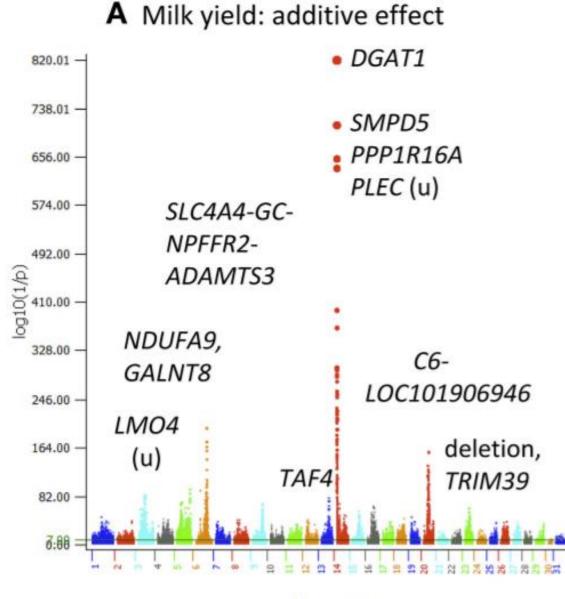
First conception rate on 2k Holstein heifers



Estimated heritability 36% (normally 1%)

Identified 146 unique loci at $p < 5 \times 10^{-8}$ level

Galliou et al., 2020, https://doi.org/10.3390/genes11070767



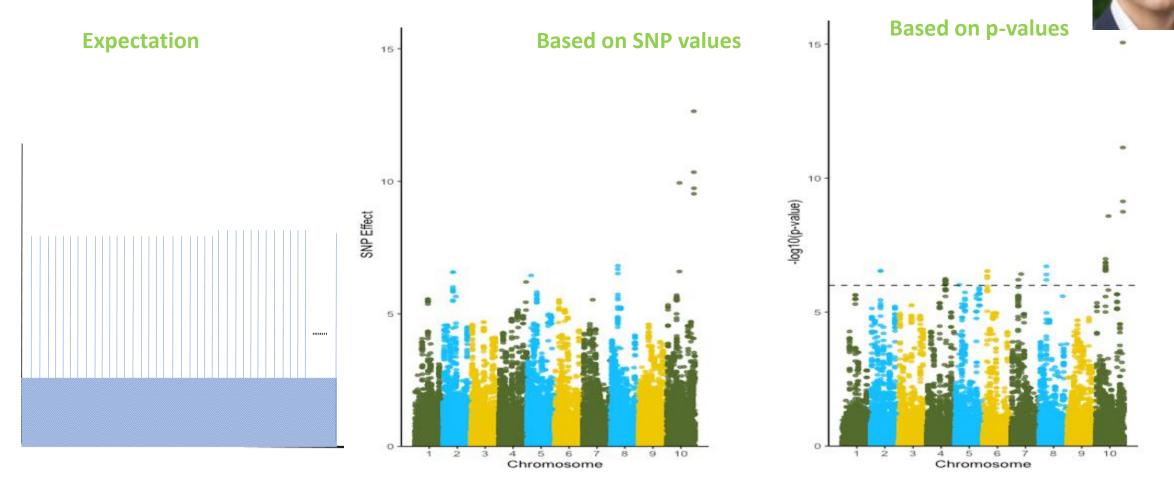
GWAS on 294k Holstein cows

Jiang et al., 2019

doi: 10.3389/fgene.2019.00412

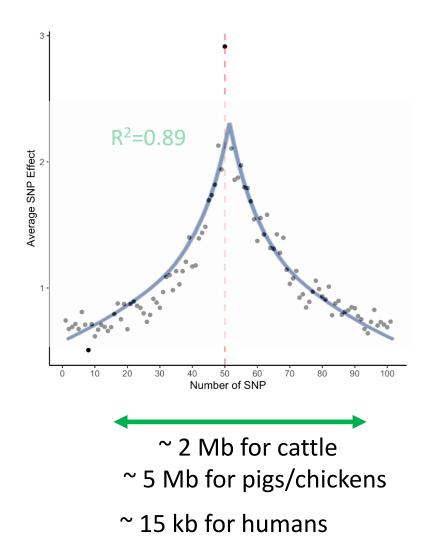
Chromosome

Manhattan plots for simulated population with 100 identical equidistant QTNs



Work started by Pocrnic et al. (2018)

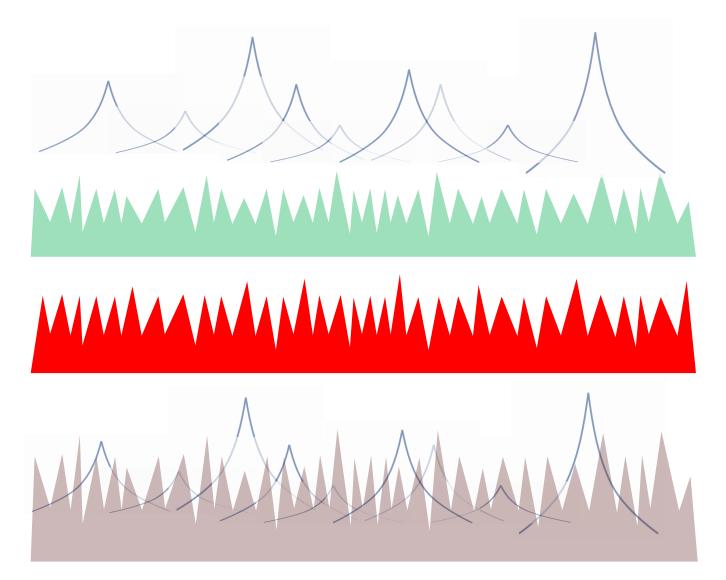
Plots averaged for 100 QTN



Pairwise linkage disequilibrium curve

1/Ne Morgans for 80% QTN variance Ne - effective population size

What is Manhattan plot composed of?



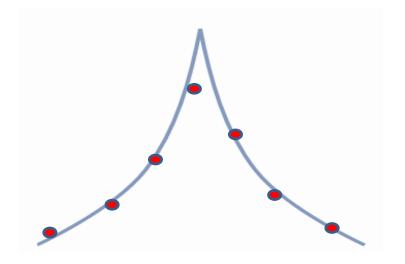
QTNs Bigger with larger QTN and larger data

Relationships

Noise Smaller with more data

Combined

Why ssGBLUP accounts for QTN?



SNPs cover QTN LD curve

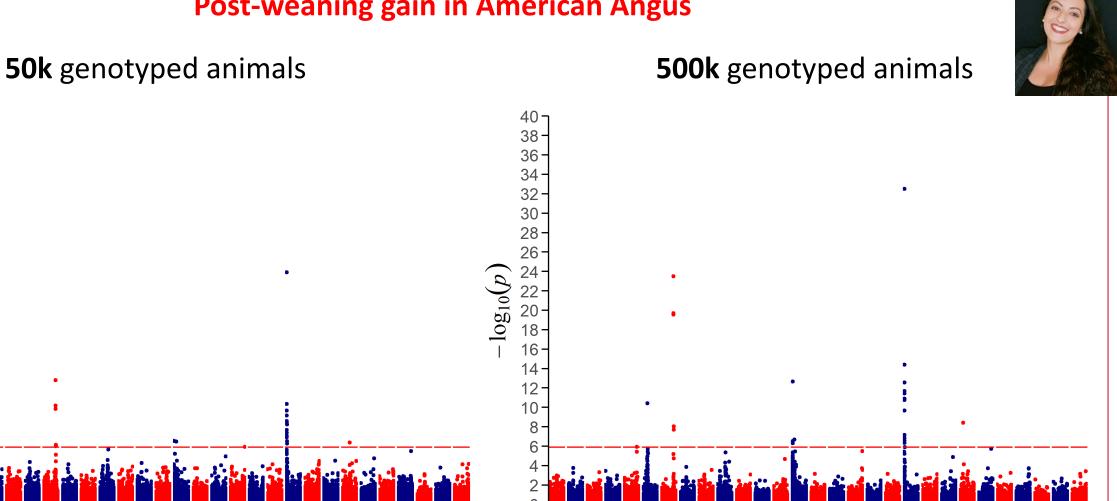
P-values for GWAS in (ss)GBLUP

$$pval_i = 2\left(1 - \Phi\left(\left|\frac{\widehat{snp}_i}{sd(\widehat{snp}_i)}\right|\right)\right)$$
 (Chen et al., 2017)

If $sd(\hat{snp}_i)$ approximately constant, Manhattan plots based on $|\hat{snp}_i|$ and $pval_i$ similar

Large data – PEV from accuracy approximations (Bermann et al., 2021)

Post-weaning gain in American Angus



 1 2 Chromosome

Chromosome

40-

38-

18-

16-

14.

10-

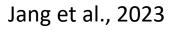
8.

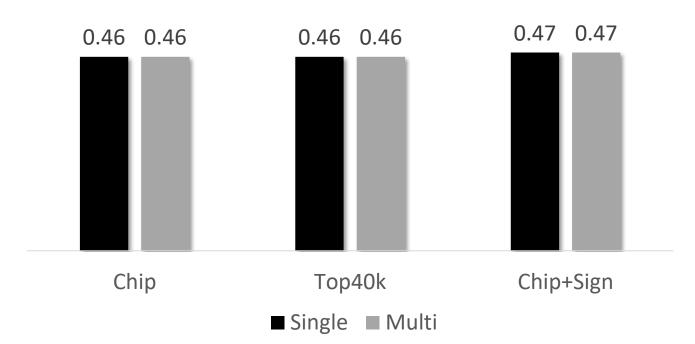
 $\log_{10}(p)$

Leite et al., 2023 12

Sequence data

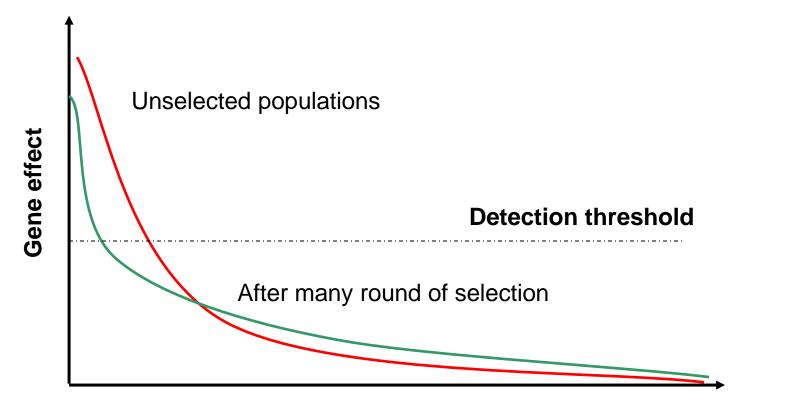
- 207k pigs with sequence
- 5M pedigree
- 1.5M records
- Single and multi-breed





Accuracy

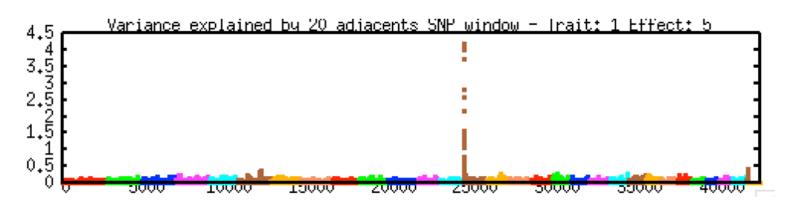
Distribution of QTL effects



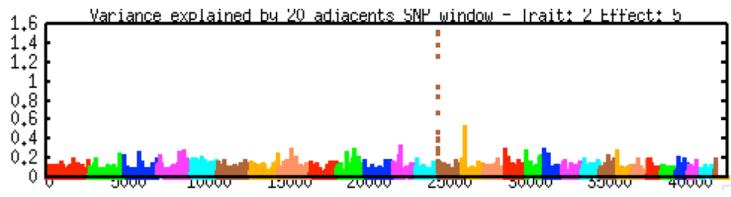
Genes (from largest to smallest)

GWAS using 35k Holstein bulls

Milk – first parity



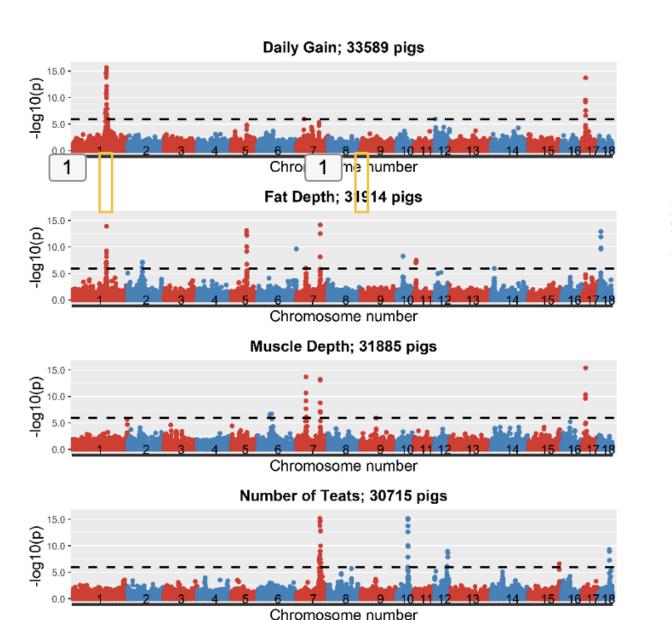
Mortality – first parity



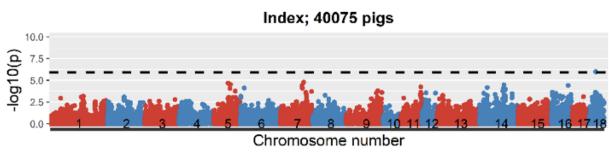
(Tokuhisa et al, 2014; Tsuruta et al., 2014)

GWAS for various traits and index in pigs

Bijma, EAAP 23



Index



- Different peaks in different lines
- Antagonistic pleiotropy

Conclusions for GWAS

- QTN profile wide with small effective population size
- Large signals in GWAS due to QTN, relationships and noise (incl. Imputation)
- Most QTNs probably below detection limit
- ssGBLUP accounts for QTL with large data

Positive and Negative Impacts of Genomic Selection

Ignacy Misztal and Daniela Lourenco University of Georgia

Negative effects of genomic selection

- Informal industry reports:
 - Deteriorating sow survival and pig mortality in pigs
 - Deteriorating feet & legs in beef
 - Short teats and increased calf mortality in dairy
 - Increased sensitivity to heat stress in dairy
 - Deteriorating disease resistance across species

• Recessive genes or pleiotropy?

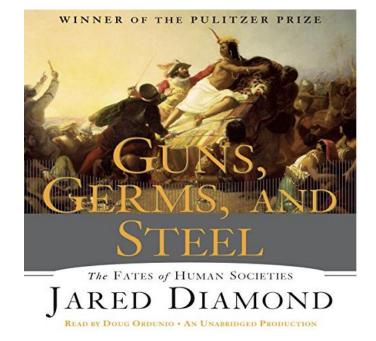
Genetic selection as optimization

- Selection for one trait or an index
- Gains on selected traits
- Losses on correlated antagonistic traits

• Losses compensated by improved environment/management

History of selection strategies

- Domestication
- Unformal
- Large-scale single-trait for production traits
- Multi-trait with fitness traits
- Genomic



Livestock Production Science

Volume 93, Issue 1, 1 April 2005, Pages 3-14

Go to Livestock Production Science on ScienceDirect

Genetics of adaptation and domestication in livestock \Rightarrow

<u>Sandrine Mignon-Grasteau</u>^a *Q* ⊠, <u>Alain Boissy</u>^b, <u>Jacques Bouix</u>^c, <u>Jean-Michel Faure</u>^a, <u>Andrew D. Fisher</u>^d, <u>Geoffrey N. Hinch</u>^e, <u>Per Jensen</u>^f, <u>Pierre Le Neindre</u>^b, <u>Pierre Mormède</u>^g, <u>Patrick Prunet</u>^h, <u>Marc Vandeputte</u>ⁱ, <u>Catherine Beaumont</u>^a

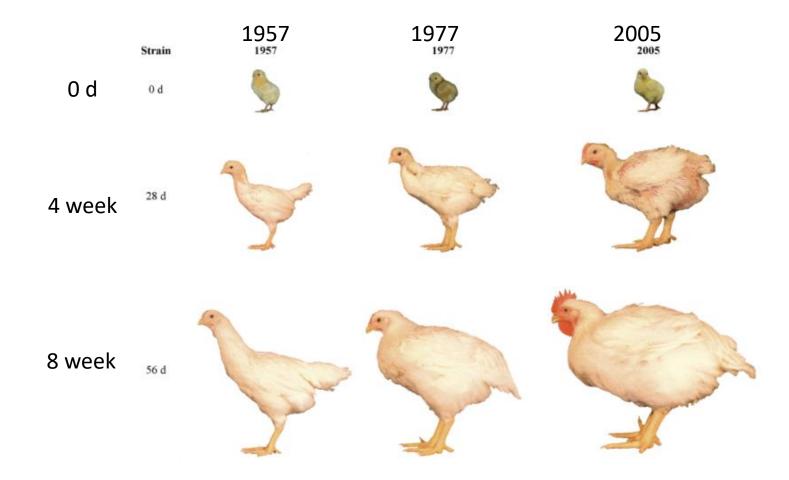
Domestication Winners

Growth Milk Mating procedures

Losers

Food finding Seasonal reproduction Predator avoidance Brain size

Example of effects of mostly single-trait selection



Zuidhof et al. (2014) http://dx.doi.org/10.3382/ps.2014-04291

Side effects of intensive selection for growth in broiler chicken

- Unlimited appetite / obesity → artificial lightning
- Poor survival of males → male supplementation
- Increased susceptibility to diseases \rightarrow antibiotics
- Low hatchability
 → alternate heating/cooling of incubators

All companies – similar problems at same time Initially problems kept confidential

•

Undesirable side effects of selection for high production efficiency in farm animals: a review

W.M. Rauw^{a,*}, E. Kanis^b, E.N. Noordhuizen-Stassen^c, F.J. Grommers^c

^aDepartment of Animal Science, Agricultural University of Norway, P.O. Box 5025, 1432 Ås, Norway ^bAnimal Breeding and Genetics Group, Wageningen Institute of Animal Science, Wageningen Agricultural University, P.O. Box 338, 6700 AH Wageningen, The Netherlands ^cDepartment of Herd Health and Reproduction and Interdepartmental Section Veterinary Medicine and Society, University of Utrecht, P.O. Box 80151, 3508 TD Utrecht, The Netherlands

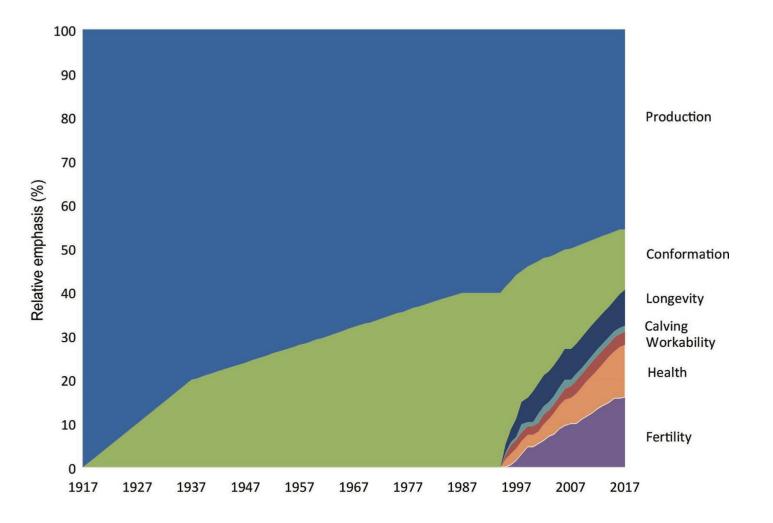
Received 4 July 1997; accepted 29 April 1998

...over 100 references on undesirable(cor)related effects of selection ... in broilers, pigs and dairy cattle....

Future application ... DNA-techniquesmore dramatic consequences....

Selection for more than production traits alone may prevent such.

Changes in US dairy index



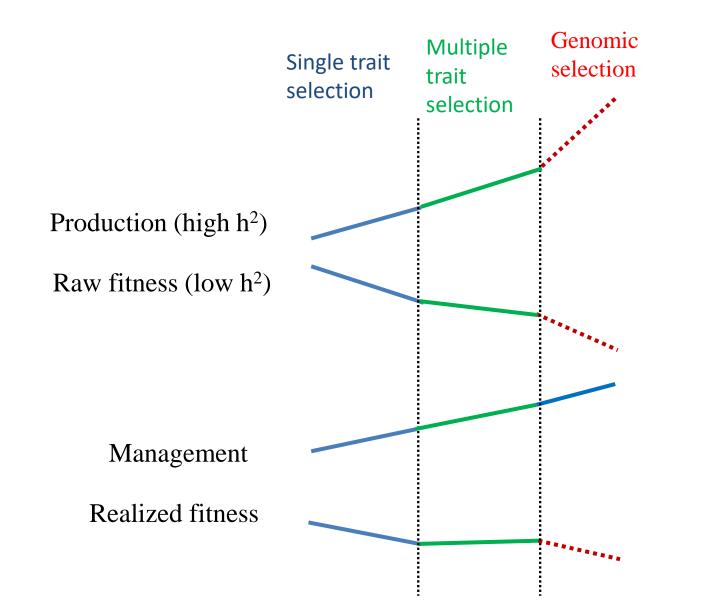
Miglior et al., 2017

Effects of genomic selection

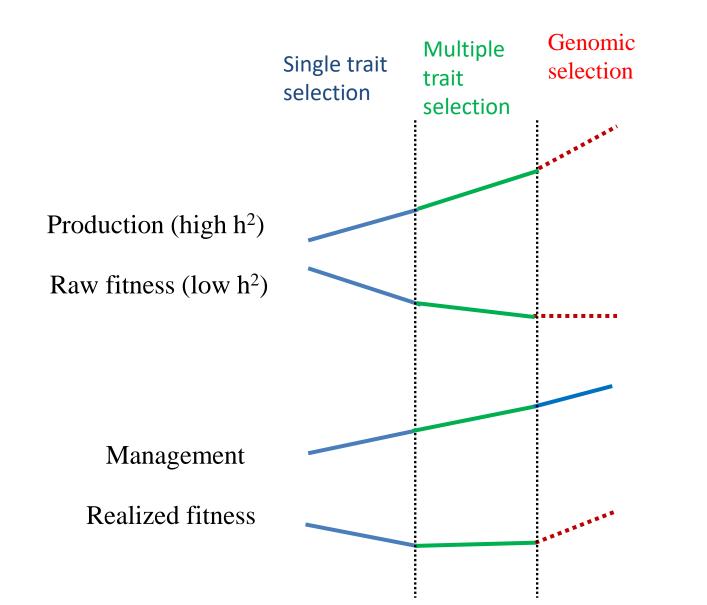
- High accuracy for well recorded traits
- Low accuracy for low h² traits with little information
- Lowered generation interval

- Acceleration of trends for selected traits
- Acceleration of correlated responses
- Changes in genetic parameters

Hypothetical trend changes in 3 stages of genetic selection



... large data for fitness traits ...



Selection and resource allocation theory

- Thresholds of minimum energy required for fitness, environment dependent (Van der Waaij, 2004; Rauw, 2012; Knapp, 2014)
- More energy for production → fitness more antagonistic
 - Genetic correlations → -1
 - h² of selection index decline
- Fast selection → unbalanced animals (Huber, 2015)

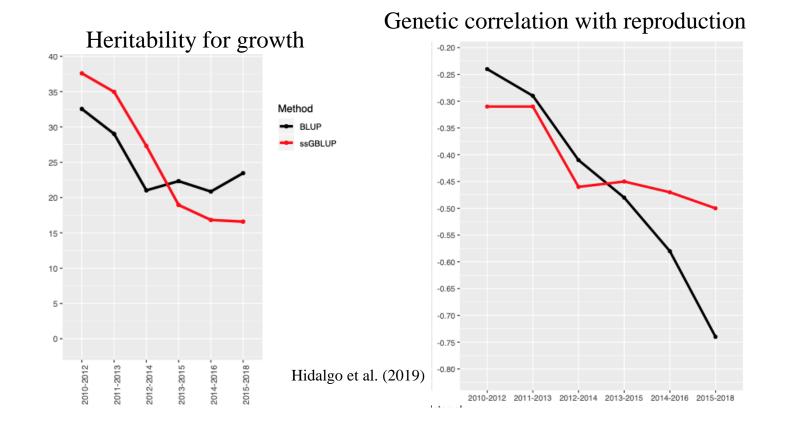
Problems and species

- Need large data for accurate evaluations
- Small fraction of fertility to performance records in some species
 - ~ 1 in cattle
 - 1/15 in pigs
 - 1/200 in layers
- Problems with early mortality/morbidity when affected animals not genotyped

Genomic gain for production and fitness traits – example in pigs

- 1000 sows per generation
- 15 piglets per sow
- 4 generations
- Gain per generation:
 - 0.65 phenotypic SD for growth
 - 0.02 phenotypic SD for number of born dead
- Genomic favors bigger populations with better recording

Changes in (co)variances in pigs due to genomic selection



Heritability halved, antagonistic correlations -0.3 \rightarrow -0.5

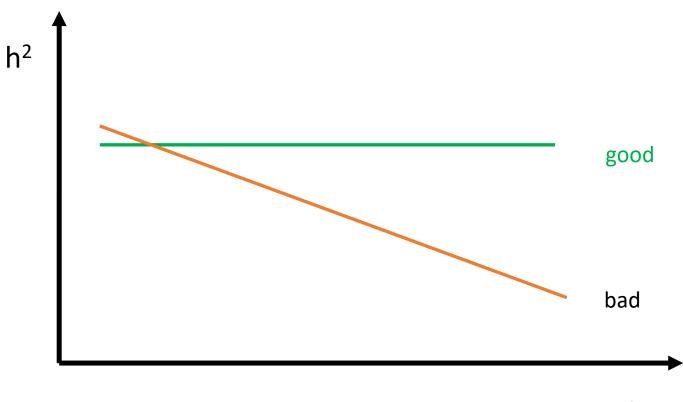
Why changes in genetic parameters?

- Bulmer effect
- Changing resource allocation
- Changes in gene frequencies
- Changes in trait definitions
- G x E
- Recessives
- ...

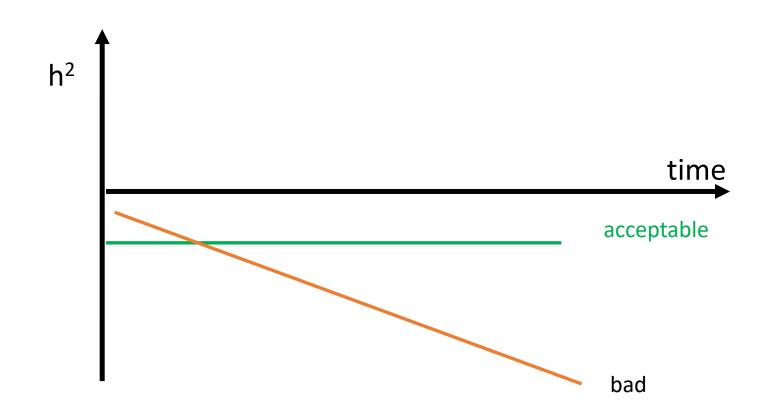
How to circumvent negative effects?

- Start or expand recording for problematic traits
- Have a realistic index
 - Needs estimates for last generation
- Focus on traits where the parameters are changing rapidly
 - Needs estimates for last generation

Possible changes in heritability



Possible changes in genetic correlations

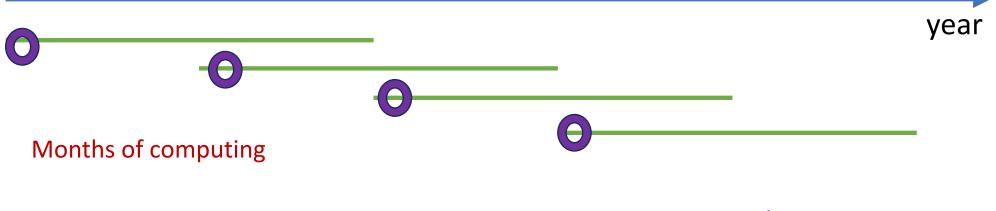


Using theoretical and realized accuracies to estimate changes in heritabilities and genetic correlations

Ignacy Misztal University of Georgia

How to estimate parameter change by generation?

- If REML/Gibss sampling
 - Base population parameters
 - Impossible computations with too many genotypes
 - Biases with too few generations (Cesarani et al., 2019)



Base population parameters

Requirements for new estimation

- All data including genomic
- Parameters by last generation/ year
- Reasonable computing cost

Last generation parameters

Realized and theoretical accuracies

Realized accuracy
$$acc = corr(y - Xb, \hat{u})/h$$

Legarra et al. (2008)

y-Xb - adjusted phenotype \hat{u} - breeding value obtained without that phenotype h^2 - heritability

Theoretical accuracy
$$acc = \sqrt{\frac{Nh^2}{Nh^2 + M_e}}$$

Daetwyler et al. (2008)

N- number of genotyped animals with phenotypes $M_{\rm e}-$ number of independent chromosome segments

Me ≈ 5k (chickens, pigs), 10k (beef), 15k (Holsteins) Pocrnic et al. (2017)

Pig data set 150k records on growth (h²=0.21) 25k records on fitness (h²=0.05)

53k genotyped animals

Hollifield et al., 2021

Theoretical accuracy

$$\frac{53k * 0.21}{53k * 0.21 + 5k} = 0.83$$

growth

$$\int \frac{25k * 0.05}{25k * 0.05 + 5k} = 0.44$$

Realized accuracy

0.82

0.41

Broiler chicken data set

820k phenotypes for growth h²=0.3 150k genotyped

Theoretical accuracy $\sqrt{\frac{150}{150k}}$ Realized accuracy

$$\frac{150k * 0.3}{150k * 0.3 + 5k} = 0.94$$
0.58

Both accuracy same 0.89 if $h^2 = 0.13$

Company was using 0.14! (Breen, 2022)

Hidalgo et al., 2021

Formulas for estimating heritability

$$\widehat{h^2}: \sqrt{\frac{Nh^2}{Nh^2 + M_e}} = corr(y - Xb, \widehat{u})/h$$

$$\widehat{h^{2}} = \frac{c^{2} + \sqrt{c^{4} + 4c^{2}M_{e}/N}}{2}, c = corr(y - Xb, \widehat{u})$$

$$SE(\widehat{h^2}) \approx \frac{1}{\sqrt{N_{val}}} \left[c + \frac{2c^2 + \frac{4M_e}{N}}{\sqrt{c^2 + \frac{4M_e}{N}}} \right] \widehat{h^2} \approx \frac{3c}{\sqrt{N_{val}}}$$

N - # animals in reference N_{val} – number of animals in validation

Heritability for milk in Holsteins

J. Dairy Sci. 104:5843–5853 https://doi.org/10.3168/jds.2020-19789

© 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Genomic predictions for yield traits in US Holsteins with unknown parent groups

A. Cesarani,¹* • Y. Masuda,¹ • S. Tsuruta,¹ • E. L. Nicolazzi,² P. M. VanRaden,³ • D. Lourenco,¹ • and I. Misztal¹ • ¹Department of Animal and Dairy Science, University of Georgia, Athens 30602 ²Council on Dairy Cattle Breeding, Bowie, MD 20716 ³Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350

# animals with phenotypes and genotypes	580k
# animals with validation	381k
Assumed # chromosome segments M _e	15k
Initial h ²	0.35
Calculated h ²	0.33

How to estimate genetic correlations?

Predictivity for trait i

$$corr(y_i - Xb_i, \widehat{u}_i) = acc_i h_i$$

What is predictivity from trait i to trait j?

$$corr(y_i - Xb_i, \widehat{u_j}) = ?$$

....

....

$$corr(y_{i} - Xb_{i}, \widehat{u_{j}}) = acc_{j} \ corr_{ij} \ h_{i}$$
$$corr_{ij} = \frac{corr(y_{i} - Xb_{i}, \widehat{u_{j}})}{h_{i} \ acc_{j}} \qquad SD(corr_{ij}) \approx \frac{1}{h_{i} \ acc_{j} \sqrt{N_{val}}}$$

Conclusions

- Potential negative effects of genomic selection on fitness traits
 - faster correlated responses
 - Potentially increased antagonism
- Need new methods to estimate genetic parameters use of predictivity promising
- Response to QTL wide for pigs & chickens- several Mb
 - Probably false QTL if no LD trail
 - ssGBLUP accounts for QTL with large data
- "Good" large QTLs probably fixed, remaining show pleiotropy

UGA AB&G team

