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Estimating changing parameters in pigs (Hidalgo et
al., 2019)

* Growth (h2=0.3) and fertility (h2=0.07)
e 40k genotypes over 10 years
* 400k animals

* Data slices for 3 years
— Elimination of noncontributing genotypes
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Why parameters change

Bulmer effect

Response in unselected traits when other trait(s) strongly
selected

Epistatic effects
Change in trait definition:

— Management
— Changing resource allocation



Cases of changing correlations - resource allocation

* Milk and dairy form
— Old times: fat cows lose milk by getting fat

— New time: Cows need fat as body reserves during negative energy
balance

* Production and fertility
— When production low, fertility OK

— When production very high, energy redirected from fertility
e fertility = innate_fertility - a production




Old times for parameter estimation

Pick a subset
Estimate variance components
Use a fact that mixed-model equations sparse

AIREML
— 100k-1M animals
— Cubic costs with multiple traits, crashes if too many
— Often fast convergence to final value

Gibbs sampler
— Over 1 M animals
— Linear costs with traits
— Not sure when to finish samples
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What changed with genomic selection?

* Possible biases due to genomic preselection

— Evaluation unbiased if all data used for selection included in analyses
(Henderson, 1984).

* Long or impossible computing

* Accelerated “aging” of the additive model



Genetic trend for genotyped bulls (Masuda et al., 2019)
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Computing issues

Mixed models stored as sparse matrix
— If 4 byte integer, number of elements < 23! =2 G elements

Equations no longer sparse — dense blocks
— Limit of about 50k genotypes for 1 trait, 30k for two traits

REML: Sparse matrix factorization/inversion inefficient with dense blocks

YAMS (Masuda et al., 2015) — sparse matrix package that recognizes dense blocks
— Up to 100 time faster than older FSPAK
— About 10 hrs (AIREMLF90) for 200k animal (15k genotyped) 4 trait model



When parameter estimation biased?
Simulation by Cesarani et al. (2018)

3 of 3k animals each

30% animals in each generation genotyped

REML, GREML (genotyped animals only) and ssGREML
Selection or random mating

Random or best animals genotyped

1 to 3 generations of data



No selection (h2 = 30%)

One generation of data Three generations of data
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Mostly unbiased estimates without selection
Some inflation with small data in GREML and selective genotyping



EBV selection (h2=30%)

One generation of data
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Genetic variances in ssGREML and REML with
selective genotyping (Wang et al., 2020)

Analysismodel  Analysis genotyping strategy 52 (SE) a2 (SE)
and proportion (%)

H-AM SSGREML  Selective 10 13,358 (635)°° 22,358 (324)*
Assumed 05=9644 30 55,051 (6397° 8695 (136)*
05=24,798  Random 10 9265 (469) 24,231 (270)*

20 8967 (440) 24,382 (243)

30 8873 (421) 24461 (223)
A-AM GREML 11,475 (544)*° 23,148 (217¥°

(2020) 52:31 Geneti
hitps://doi.org/10.1186/512711-020-00550-w m} s e
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Estimated heritability for broiler body weight:
~ 0.30 with pedigree
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Recommendation for parameter estimation

Any methods works if unselected data
— Genomic info reduces SE

If selection, use at least 2-3 generations
REML may be OK with many generations

Costs with ssGBLUP reduced if data pruned
— Phenotypes for 2-3 generations
— Pedigrees 1-2 generations behind phenotypes
— Only contributing genotypes

Beware of very low and very high estimates — data selection or poor model



Packages for parameter estimation

* General based on relationships — extensive modeling capabilities
— BLUPF90+
— DMU
— Wombat etc.
— ASREML

* Packages estimating SNP effects — usually limited modeling

— GVCBLUP (UMN)
— GS3 (INRA)

— GENSEL (IASTATE)
— Golden Helix



How to estimate changes over time

 Random regression model on year of birth (Tsuruta et al.,
2004)

— Need to use all relevant genotypes
— Multiple animal effects
— Very expensive

 Computing by data slices

— Small slices - less computing, more bias, parameters for base
generation



Changing correlations between productive life and body

size (Tsuruta et al., 2004)

J. Dairy Sci. 88:1156-1165
© American Dairy Science Association, 2005.

Changing Definition of Productive Life in US Holsteins:
Effect on Genetic Correlations
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Parameter estimates by time slices by traditional
methods

* Data samples
* Few generations
* Base population parameters

—

o year
%

Months of computing e

Base population parameters



Need new methods

e All data including genomic
* Parameters by last generation/ year
* Reasonable computing cost

—
year

o

Hours of computing

Last generation parameters



Realized and theoretical accuracies

Legarra et al. (2008)

Realized accuracy acc = corr (y — Xb,1)/h

Theoretical accuracy acc =

Nh?

\

Nh2 + M,

y-Xb - adjusted phenotype

il - breeding value obtained without
that phenotype

h? - heritability

Daetwyler et al. (2008)

N — number of genotyped animals with phenotypes
M. — number of independent chromosome segments

Me = 5k (chickens, pigs), 10k (beef), 15k (Holsteins)
Pocrnic et al. (2017)



Pig data set

150k records on growth (h?=0.21)
25k records on fitness (h2=0.05)

53k genotyped animals

Hollifield et al., 2021

growth
Theoretical dCCuracy 53k % 0.21 \/ 25k * 0.05 — 0.44
53k » 021+ 5k 083 25k *0.05+ 5k

Realized accuracy 0.82 0.41



Formulas for estimating heritability

h2 Nh* (y — Xb,0)/h
: = corr (y — Xb,
JNRZ M, T AR
¢+ Jcr*+4c2M,/N
h? = \/ > e/ ,c =corr(y — Xb, 1)
. 2C2+%- . c
SE(R?) ~ Ntal c+ 2+iVMe h2) ~ ;val
¢ N

N — # animals in reference N,, — number of animals in validation



Heritabilitv for milk in Holsteins

Qéjlll\‘\%g J. Dairy Sci. 104:5843-5853
ZAQEE9 < https:/idoi.org/10.3168/jds.2020-19789

?"9,1,:‘!%0\“‘} © 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®.
Sl This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Y L/

Genomic predictions for yield traits in US Holsteins
with unknown parent groups
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# animals with phenotypes and genotypes _

# animals with validation 381k
Assumed M, 15k

Initial h2 0.35
Predictivity 0.55

Calculated h? 0.33



How to estimate genetic correlations?

Predictivity for trait i corr(y; — Xb;,U;) = acc; h;

What is predictivity from trait i to trait j? COTT(}’i — Xb;, ﬁ})= ?

cor‘r(yl- — X bi,uj) = acc; cortyj h;

B cor’r(yi — Xbl-,ﬂ}-)
Oy = h; acc; SD(corry;) ~ -
l J h; acci \/Nyg




Conclusions

Possibly fast changes in genetic parameters under genomic
selection

Current estimates needed for selection index

Estimation with genomic data by REML/Bayesian methods very
expensive with more than 10-20k genotyped animals

New methods needed to estimate parameters for last generation
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