# Progress in GWAS for large datasets with GBLUP and single-step GBLUP

Ignacy Misztal, Daniela Lourenco and Matias Bermann



## Specificity of plant and animal breeding

#### • Plants

- Find genes in wild species
- Introgress into inbred lines
- Genetic evaluation of inbred crosses across environments
  - All crosses genotyped
- Animals
  - Selection usually within breeds and lines
  - Commercial animals purebreds or crossbreds
  - Many animals ungenotyped
  - Single-step GBLUP dominant methodology

# Single-step GBLUP –pedigree and genomic relationships combined

#### Matrix H (Legarra ,2009)



$$\mathbf{H} = \mathbf{A} + \begin{bmatrix} \mathbf{A}_{12} \mathbf{A}_{22}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{G} - \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{0} \end{bmatrix}$$

Inverse of H (Aguilar et al., 2010)

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

G –genomic relationship matrix
1 –ungenotyped animals
2-genotyped animals

Christensen and Lund, 2010 Boemcke et al., 2011

#### ssGBLUP for Genome Wide Association Studies

Cited by 537

- Large research interest in GWAS
- Limitations for current methods
  - Simple models
  - Single trait
  - Complicated if not all animals genotyped

#### Can ssGBLUP be used for GWAS?

Genet. Res., Camb. (2012), 94, pp. 73–83. © Cambridge University Press 2012 doi:10.1017/S0016672312000274

73

Genome-wide association mapping including phenotypes from relatives without genotypes



H. WANG<sup>1\*</sup>, I. MISZTAL<sup>1</sup>, I. AGUILAR<sup>2</sup>, A. LEGARRA<sup>3</sup> AND W. M. MUIR<sup>4</sup> <sup>1</sup>Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602-2771, USA <sup>2</sup>Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, 90200 Canelones, Uruguay <sup>3</sup>INRA, UR631 Station d'Amélioration Génétique des Animaux (SAGA), BP 52627, 32326 Castanet-Tolosan, France <sup>4</sup>Department of Animal Science, Purdue University, West Lafavette, IN 47007-1151, USA

(Received 19 September 2011; revised 8 December 2011, and 9 March 2012; accepted 13 March 2012)





#### GWAS with ssGBLUP (Wang et al., 2012)

- Convert GEBV to SNP effects
- Estimate individual SNP variances
- Incorporate variances in G
- Possibly recompute GEBV and iterate

1. D=I 2. G=ZDZ'/q 3. Compute a 4. u=DZ'/q G<sup>-1</sup> a 5. d<sub>i</sub>=2p<sub>i</sub>(1-p<sub>i</sub>)u<sub>i</sub><sup>2</sup> 6. D=n D/tr(D) 7. Loop to 2

Output as % of variance explained in a window

#### Discrepancies in GWAS methods Chicken weight



## P-values for GWAS in (ss)GBLUP

$$pval_i = 2\left(1 - \Phi\left(\left|\frac{\widehat{snp}_i}{sd(\widehat{snp}_i)}\right|\right)\right)$$
 (Chen et al., 2017)

If  $sd(\widehat{snp}_i)$  approximately constant, Manhattan plots based on  $|\widehat{snp}_i|$  and  $pval_i$  similar

### Large data – APY algorithm

- Due to LD, genomic information compresses well: about 15k for cattle and about 5k for pigs and chicken
- APY algorithm:  $u_{noncore} = P u_{core}, + \varepsilon$
- Number of core animals ~ equal to dimensionality



J. Dairy Sci. 97:3943–3952 http://dx.doi.org/10.3168/jds.2013-7752 © American Dairy Science Association<sup>®</sup>, 2014. Open access under <u>CC BY-NC-ND license</u>.

Using recursion to compute the inverse of the genomic relationship matrix

I. Misztal,\*<sup>1</sup> A. Legarra,† and I. Aguilar‡ "Department of Animal and Dairy Science, University of Georgia, Athens 30602-2771 †INRA, UR631-SAGA, BP 52627, 31326 Castanet-Tolosan Cedex, France †Instituto Nacional de Investigación Agropecuaria, Las Brujas 90200, Uruguay

Inexpensive Computation of the Inverse of the Genomic Relationship Matrix in Populations with Small Effective Population Size

> Ignacy Misztal<sup>1</sup> Animal and Dairy Science, University of Georgia, Athens, Georgia 30602 ORCID ID: 0000-0002-0382-1897 (I.M.)



$$\mathbf{A}^{-1} + \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{pmatrix} \qquad \longrightarrow \qquad \mathbf{A}^{-1} + \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}_{\mathrm{APY}}^{-1} - \mathbf{A}_{22}^{-1} \end{pmatrix}$$



#### **APY Single-step GWAS**

• Model

$$y = W\alpha + Zu + \eta$$

#### Procedure

- 1. Calculate  $Var(\mathbf{u})^{-1} = \mathbf{H}_{APY}^{-1}$
- 2. Estimate variance components
- 3. Calculate  $\hat{u}_{2_c}$  and approximate  $Var(\hat{u}_{2_c}) = G_{cc} C^{u_{2_c}u_{2_c}}$
- 4. For each marker:
  - 1. Calculate  $\hat{b}_i = \mathbf{x}'_{c_i} \mathbf{G}_{cc}^{-1} \, \hat{\mathbf{u}}_2$
  - 2. Calculate  $sd(\hat{b}_i) = \sqrt{\mathbf{x}'_{c_i}\mathbf{G}^{-1}_{cc}(\mathbf{G}_{cc} \mathbf{C}^{\mathbf{u}_{2c}\mathbf{u}_{2c}})\mathbf{G}^{-1}_{cc}\mathbf{x}_{c_i}}$
  - 3. Calculate p-value as  $pvalue_i = 1 \Phi\left(\frac{\hat{b}_i}{sd(\hat{b}_i)}\right)$

On the equivalence between marker effect models and breeding value models and direct genomic values with the Algorithm for Proven and Young

Matias Bermann<sup>1\*</sup><sup>®</sup>, Daniela Lourenco<sup>1</sup>, Natalia S. Forneris<sup>2,3</sup>, Andres Legarra<sup>4</sup> and Ignacy Misztal<sup>1</sup>

Efficient approximation of reliabilities for single-step genomic best linear unbiased predictor models with the Algorithm for Proven and Young

Matias Bermann,<sup>1,</sup> Daniela Lourenco, and Ignacy Misztal



### **Application example**

- Post-weaning gain in American Angus
- 845,000 phenotypes
- 450,000 genotypes
- 1,570,000 animals in the pedigree
- ssGWAS (50k genotyped animals) vs. APY-ssGWAS (450k genotyped animals)
- We expect:
  - Higher power
  - Less noise
  - Less false-positives



Leite et al. (in progress)



#### UNIVERSITY OF GEORGIA

mbermann@uga.edu 11

## **Questions with GWAS and predictions**

- GWAS by
  - -% of variance explained usually per 1Mb
  - p-values
- Few regions explain > 1% additive variance
- Lots of QTLs detected with small data sets
- Fewer QTLs detected with large data

### First conception rate on 2k Holstein heifers



Estimated heritability 36% (normally 1%)

Identified 146 unique loci at  $p < 5 \times 10^{-8}$  level

Galliou et al., 2020, https://doi.org/10.3390/genes11070767

# Manhattan plots for simulated population with 100 identical equidistant QTNs



Work started by Pocrnic et al. (2018)

#### Plots averaged for 100 QTN



Pairwise linkage disequilibrium curve

1/Ne Morgans for 80% QTN variance Ne - effective population size

### What is Manhattan plot composed of?



QTNs Bigger with larger QTN and larger data

Relationships

Noise Smaller with more data

Combined



#### Why GBLUP accounts for QTN?



If 4 SNP per segment, 32 SNP account for 80% of QTN variance

Need chip with 16 NeL SNP to mostly account for QTN About 20k for pigs/broilers, 60k for cattle, 5m for humans

#### **Effective population size affects GWAS**



Sungbong et al., 2021

## Why few QTN detected?



## GWAS for various traits and index in pigs



#### Bijma, EAAP 23











#### Index



- Different peaks in different lines
- Antagonistic pleiotropy

# Conclusions

- GWAS in farm animals affected by small effective population size
- Optimal window size 1-2 Mb for Ne=100
- Large signals in GWAS due to QTN, relationships and noise (incl. Imputation)
- Large QTL show pleiotropy QTL not visible in index
- GWAS by single-step GBLUP for any data size with option for p-values



# UGA AB&G team

