GWAS in large animal studies – why so few QTLs identified?

Ignacy Misztal University of Georgia

CfS Mini Conference, Center for Statistics and Human Genetics, University of Edinburgh, March 26, 2024

THE UNIVERSITY OF GEORGIA

Schoo

Georgia Museum of Art

Edgar L. Rhodes Animal Science Center

Research in Breeding & Genetics lab at UGA

- Focus on methods useful for genetic evaluation of animals
- New methods put into computing package- BLUPF90
- Methods used worldwide
- Sponsors across species
 - Nearly all US animal breeding companies (dairy, beef, pigs, broilers, layers, fish
 - Bayer (crops)
- Extra applications in bees, humans (schizophrenia) and trees
- 20+ papers/year
- Access to most comprehensive data sets anywhere

BLUPF90 software suite

Single-step GBLUP –BLUP with joint pedigree and genomic relationships

Real (Legarra et al.,2009)

$$\mathbf{H} = \mathbf{A} + \begin{bmatrix} \mathbf{A}_{12} \mathbf{A}_{22}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{G} - \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}$$

1 - ungenotyped
2 - genotyped

Specificity of plant and animal breeding

• Plants

- Find genes in wild species
- Introgress into inbred lines
- Genetic evaluation of inbred crosses across environments
 - All crosses genotyped
- Animals
 - Selection usually within breeds and lines
 - Commercial animals purebreds or crossbreds
 - Many animals ungenotyped
 - Single-step GBLUP dominant methodology

ssGBLUP for Genome Wide Association Studies

- Large research interest in GWAS
- Limitations for current methods
 - Simple models
 - Single trait
 - Complicated if not all animals genotyped

Can ssGBLUP be used for GWAS?

Genet. Res., Comb. (2012), 94, pp. 73-83. © Cambridge University Press 2012 doi:10.1017/S0016672312000274 73

Genome-wide association mapping including phenotypes from relatives without genotypes

H. WANG¹*, I. MISZTAL³, I. AGUILAR³, A. LEGARRA³ AND W. M. MUIR⁴ ¹Department of Animal and Dairy Science. University of Georgia. Athens. GA 30607-2771. USA ⁸Institute Nucleonal de Investigación Agroprequatus. INIA Las Braias. 90:200 Cambiones. Unequay ⁸Institute Nucleonal de Investigación Génitripue des Animuux (SAGA). BP 52627, 32326 Castoneis-Tolonam, France ⁸Department of Animal Science, Purche University. West Lafforstr. IN 45907-1151. USA

(Received 19 September 2011; revised 8 December 2011; and 9 March 2012; accepted 13 March 2012)

University of Edinburgh, March 26, 2024

Cited by 537

GWAS with ssGBLUP (Wang et al., 2012)

- Convert GEBV to SNP effects
- Estimate individual SNP variances
- Incorporate variances in G
- Possibly recompute GEBV and iterate

D=I
G=ZDZ'/q
Compute a
u=DZ'/q G⁻¹ a
d_i=2p_i(1-p_i)u_i²
D=n D/tr(D)
Loop to 2

Output as % of variance explained in a window

Discrepancies in GWAS methods Chicken weight

CfS Mini Conference, Center for Statistics and Human Genetics, University of Edinburgh, March 26, 2024

Are p-values possibly in (ss)GBLUP? $pval_i = 2\left(1 - \Phi\left(\left|\frac{s\widehat{n}p_i}{sd(s\widehat{n}p_i)}\right|\right)\right)$ (Chen et al., 2017)

In ssGLUP conversions: GEBV to SNP effects PEV(GEBV) to PEV(SNP) Aguilar et al. (2021)

CfS Mini Conference, Center for Statistics and Human Genetics, University of Edinburgh, March 26, 2024

Large data - recursion as basis for genetic evaluation

Pedigree relationships (Henderson, 1976):

 $u_i = f(sire, dam) + \varphi$

 $u_i = f(thousand animals) + \varphi$

Genomic relationships:

Misztal et al., 2014

 How many animals in recursion? About 6 k in chicken About 14k in Holsteins

CfS Mini Conference, Center for Statistics and Human Genetics, University of Edinburgh, March 26, 2024

Limited dimensionality of genomic information - chromosome segments

- Theory of junctions (Fisher, 1949):
 - Heterogenetic and homogenic tracts in genome

• For randomly mating population of constant size the number junctions (Stam, 1980):

E(Me)=4 Effective population size (Ne) * Genome size (L)

- Independent chromosome segments Me (Goddard, 2009; Daetwyler et al., 2010)
- Need 12 Me SNPs to detect 90% of junctions (MacLeod et al., 2005)

Estimated dimensionality, effective population size and optimal number of SNP

Specie	Estimated dimensionality	Effective population size (L=30M)	Optimal number of SNP (12 x Me)	
Holsteins	14k	149	180k	Pocrnic et al. (2016)
Angus	11k	113	130k	
Pigs	6k	43 (L=20M)	72k	
Chicken	6k	44	72k	
Human	360k+	3,000+	5M+	

APY Single-step GWAS

• Model

$$y = W\alpha + Zu + \eta$$

Procedure

- 1. Calculate $Var(\mathbf{u})^{-1} = \mathbf{H}_{APY}^{-1}$
- 2. Estimate variance components
- 3. Calculate \hat{u}_{2_c} and approximate $Var(\hat{u}_{2_c}) = G_{cc} C^{u_{2_c}u_{2_c}}$
- 4. For each marker:
 - 1. Calculate $\hat{b}_i = \mathbf{x}'_{c_i} \mathbf{G}_{cc}^{-1} \, \hat{\mathbf{u}}_2$
 - 2. Calculate $sd(\hat{b}_i) = \sqrt{x'_{c_i}G^{-1}_{cc}(G_{cc} C^{u_{2c}u_{2c}})G^{-1}_{cc}x_{c_i}}$
 - 3. Calculate p-value as $pvalue_i = 1 \Phi\left(\frac{\hat{b}_i}{sd(\hat{b}_i)}\right)$

On the equivalence between marker effect models and breeding value models and direct genomic values with the Algorithm for Proven and Young

Matias Bermann^{1*}0, Daniela Lourenco¹, Natalia S. Forneris^{2,3}, Andres Legarra⁴ and Ignacy Misztal¹

Efficient approximation of reliabilities for single-step genomic best linear unbiased predictor models with the Algorithm for Proven and Young

Matias Bermann, 10 Daniela Lourenco, and Ignacy Misztal

Application example

- Post-weaning gain in American Angus
- 845,000 phenotypes
- 450,000 genotypes
- 1,570,000 animals in the pedigree
- ssGWAS (50k genotyped animals) vs. APY-ssGWAS (450k genotyped animals)

Leite et al. (2024)

Questions with GWAS and predictions in animal datasets

- GWAS by
 - p-values
 - % of variance explained usually per 1Mb, why 1 Mb?
- Few regions explain > 1% additive variance
- Lots of QTLs "detected" with small data sets

First conception rate on 2k Holstein heifers

Estimated heritability 36% (normally 1%)

Identified 146 unique loci at $p < 5 \times 10^{-8}$ level

Galliou et al., 2020, https://doi.org/10.3390/genes110,70767 or Statistics and Human Genetics, University of Edinburgh, March 26, 2024

Manhattan plots for simulated population with 100 identical equidistant QTNs

Work started by Pocrnic et al. (2018)

SfS Mini Conference, Center for Statistics and Human Genetics, University of Edinburgh, March 26, 2024

Plots averaged for 100 QTN

Pairwise linkage disequilibrium curve

1/Ne Morgans for 80% QTN variance Ne - effective population size

CfS Mini Conference, Center for Statistics and Human ~ 15 kb for humans, University of Edinburgh, March 26, 2024

What is Manhattan plot composed of?

Genetics, University of Edinburgh, March 26, 2024

QTNs Bigger with larger QTN and larger data

Relationships

Combined

Noise Smaller with more data

CfS Mini Conference, Center for Statistics and Human Genetics, University of Edinburgh, March 26, 2024

Why GBLUP accounts for QTN?

If 4 SNP per segment, 32 SNP account for 80% of QTN variance

Need chip with 16 NeL SNP to mostly account for QTN

About 20k for pigs/broilers, 60k for for for thumansetics, University of Edinburgh, March 26, 2024

Effective population size affects GWAS

Sungbong et al., 2021

Why few QTN detected?

Can large QTL exist despite selection?

- Genetics and genomics of mortality in US Holsteins
- (Tokuhisa et al, 2014; Tsuruta et al., 2014)
- 6M records, SNP50k genotypes of 35k bulls

Mortality – first parity

CfS Mini Conference, Center for Statistics and Human Genetics, University of Edinburgh, March 26, 2024

GWAS for various traits and index in pigs

Bijma, EAAP 23

Daily Gain; 33589 pigs

15.0 -

(d) 10.0 5.0

15.0 -(d) 10.0 -5.0 -5.0 -

Chromosome number

Index

- Different peaks in different lines
- Antagonistic pleiotropy

Conclusions

- GWAS affected by effective population size
- Optimal window size for GWAS 1-2 Mb for Ne=100
- Large signals in GWAS due to QTN, relationships and noise (incl. Imputation)
- Large QTL in farm populations show pleiotropy QTL not visible in index

UGA AB&G team

