Approximating reliabilities of IP based on SNP effects from large ssGBLUP evaluations

GEORGIA

College of Agricultural & Environmental Sciences

Daniela Lourenco, M. Bermann, J.M. Tabet, I. Aguilar, A. Legarra, S. Tsuruta, I. Misztal

CDCB database statistics

3.2mil

lactation records integrated in National Cooperator Database in 2023 4.1mil

4.1 million cows on official milk recording (DHI, 2021)

72

countries with animal genotypes included in CDCB database

9mil

dairy animals genotyped (May 3, 2024)

1.4mil

genotypes added in 2023

93%

of genotyped animals are female

12

breeds represented in the genotypic database

89%

of genotypes are Holstein

10%

of genotypes are Jersey

ssGBLUP tests for CDCB

Material and Methods

	Number of records
Pedigree	93.4M
Genotypes	2M
Cow Conception Rate (CCR)	35.2M
Heifer Conception Rate (HCR)	11.5M
Daughter Pregnancy Rate (DPR)	89.6M
Early First Calving (EFC)	35.4M

https://www.hoards.com/

• Fertility traits are hard to evaluate due to low heritability, genetic correlations with milk yield, and changing management trends

Joemenwer.tabet@uga.edu 7

GEBV for almost 7M animals left

Equivalence between ssGBLUP and ssSNPBLUP

Indirect Predictions:

$$\widehat{\mathbf{u}}_{m}^{*} = \mathbf{Z}\widehat{\mathbf{a}}$$

$$\widehat{\mathbf{u}}_{m} = \widehat{\boldsymbol{\mu}} + \widehat{\mathbf{u}}_{m}^{*}$$

$$\widehat{\boldsymbol{\mu}}_{m} = \widehat{\boldsymbol{\mu}} + \widehat{\mathbf{u}}_{m}^{*}$$

IP + Reliability of IP

Reliability of Indirect Predictions

$$REL_{IP_{j}} = \frac{\mathbf{z}_{j} var(\widehat{\boldsymbol{a}})\mathbf{z}_{j}'}{\sigma_{11}^{2}}$$
 Liu et al. (2017)

• Obtaining $var(\widehat{a})$ from ssGBLUP

$$Var(\widehat{\boldsymbol{a}}) = k\mathbf{Z}'\mathbf{G}^{-1}(\mathbf{G} - \mathbf{C}^{\mathbf{u}_2\mathbf{u}_2})\mathbf{G}^{-1}\mathbf{Z}k$$

High cost – inverse of LHS of MME

Feasible for small datasets – up to 35k genotyped animals

How to overcome this limitation?

Using the APY framework

RESEARCH ARTICLE

Theoretical accuracy for indirect predictions based on SNP effects from single-step GBLUP

Andre Garcia 10, Ignacio Aguilar Andres Legarra Shogo Tsuruta Ignacy Misztal and Daniela Lourenco

RESEARCH ARTICLE

On the equivalence between marker effect models and breeding value models and direct genomic values with the Algorithm for Proven and Young

Matias Bermann 100, Daniela Lourenco , Natalia S. Forneris 2,3, Andres Legarra and Ignacy Misztal

- If using APY in ssGBLUP
 - Numerical equivalence
 - $\hat{\mathbf{u}} = \mathbf{Z}\hat{a}$
 - $\widehat{a} = k\mathbf{Z}'\mathbf{G}_{APY}^{-1}\widehat{\mathbf{u}}$
 - $Var(\widehat{a}) = k\mathbf{Z}'\mathbf{G}_{APY}^{-1}(\mathbf{G} \mathbf{C}^{\mathbf{u}_2\mathbf{u}_2})\mathbf{G}_{APY}^{-1}\mathbf{Z}k$

- If using APY in ssGBLUP
 - Equivalent APY ssSNPBLUP model
 - $\hat{\mathbf{u}} = \mathbf{Z}^{\dagger} \hat{\mathbf{a}}$
 - $\widehat{\mathbf{a}} = k\mathbf{Z}^{\dagger'}\mathbf{G}_{APV}^{-1}\widehat{\mathbf{u}} = k\mathbf{Z}_{C}'\mathbf{G}_{CC}^{-1}\widehat{\mathbf{u}}_{CC}$
 - $Var(\widehat{a}) = k\mathbf{Z}_{c}'\mathbf{G}_{cc}^{-1} (\mathbf{G}_{cc} \mathbf{C}^{\mathbf{u}_{2c}\mathbf{u}_{2c}})\mathbf{G}_{cc}^{-1}\mathbf{Z}_{c}k$

Function of CORE animals

Equivalence APY ssGBLUP – ssSNPBLUP

$$Var(\widehat{\boldsymbol{a}}) = k\mathbf{Z}'\mathbf{G}_{APY}^{-1}(\mathbf{G} - \mathbf{C}^{\mathbf{u}_2\mathbf{u}_2})\mathbf{G}_{APY}^{-1}\mathbf{Z}k$$

$$Var(\widehat{\boldsymbol{a}}) = k\mathbf{Z}_{c}'\mathbf{G}_{cc}^{-1} \left(\mathbf{G}_{cc} - \mathbf{C}^{\mathbf{u}_{2c}\mathbf{u}_{2c}}\right)\mathbf{G}_{cc}^{-1}\mathbf{Z}_{c}k$$

Approximated reliabilities of GEBV

Reliability of GEBV in APY ssGBLUP

- Reliability based on PEV
 - Approximated for large populations
 - Weights based on approximations
 - Block sparse inversion with APY

JOURNAL ARTICLE

Efficient approximation of reliabilities for singlestep genomic best linear unbiased predictor models with the Algorithm for Proven and Young 3

Matias Bermann ™, Daniela Lourenco, Ignacy Misztal

Journal of Animal Science, Volume 100, Issue 1, January 2022, skab353, https://doi.org/10.1093/jas/skab353

ssGBLUP evaluation process

- Genomic evaluation process
 - GEBV using APY ssGBLUP + reliability using block sparse inversion

$$C^{u_2}c^{u_2}c = (W + G_{APY}^{-1})^{-1}$$

$$Var(\widehat{\boldsymbol{a}}) = k\mathbf{Z}_{c}'\mathbf{G}_{cc}^{-1} \left(\mathbf{G}_{cc} - \mathbf{C}^{\mathbf{u}_{2c}}\mathbf{u}_{2c}\right)\mathbf{G}_{cc}^{-1}\mathbf{Z}_{c}k$$

Pipeline

- blup90iod3
 - GEBV
- accf90GS3
 - GEBV reliability and C^{u2}c^{u2}c

- postGSf90
 - Backsolve $C^{\mathbf{u}_{2c}\mathbf{u}_{2c}}$ to $var(\widehat{a})$
- Predf90
 - IP and IP reliability

Official Evaluations

Added portion

Holstein Dataset

• **Pedigree**: 2,240,568 animals

• Milk Yield: 1,422,330 Records

• **Genotypes**: Total: 33,338

Training: 32,570 bulls

Validation (2017): 768 bulls

- Exact reliabilities based on the inverse (training + validation)
- Reliabilities of IP (for validation) with exact Cu2u2 (from training)
- Reliabilities of IP (for validation) with approximated $C^{u_2}c^{u_2}c$ (from training)

Exact vs. IP reliabilities

$$b_0 = 0.01$$

$$b_1 = 0.99$$

$$Cor = 0.99$$

IP reliabilities with exact vs. approx. $C^{u_2}c^{u_2}c^{u_2}c^{u_3}c^{u_4}c^{u_5}c^{$

$$b_0 = 0.07$$

$$b_1 = 0.90$$

$$Cor = 0.94$$

Take home messages

- Reliability of IP can be computed from the official ssGBLUP runs
 - Based on approximated C^{u2cu2c}
 - Using the existent pipeline
 - Already implemented in BLUPF90

- Next steps:
 - Add the residual polygenic effect
 - Genotyped animals with own or progeny records
 - Multibreed

UGA AB&G team

AMERICAN ANGUS ASSOCIATION

ANCP

