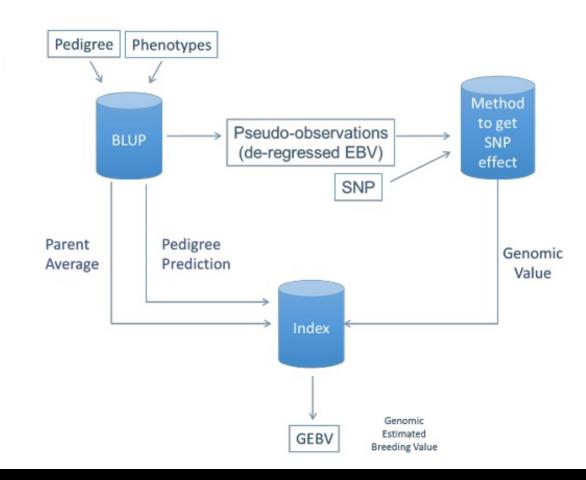
All-breed single-step GBLUP evaluations for fertility traits in U.S. dairy cattle

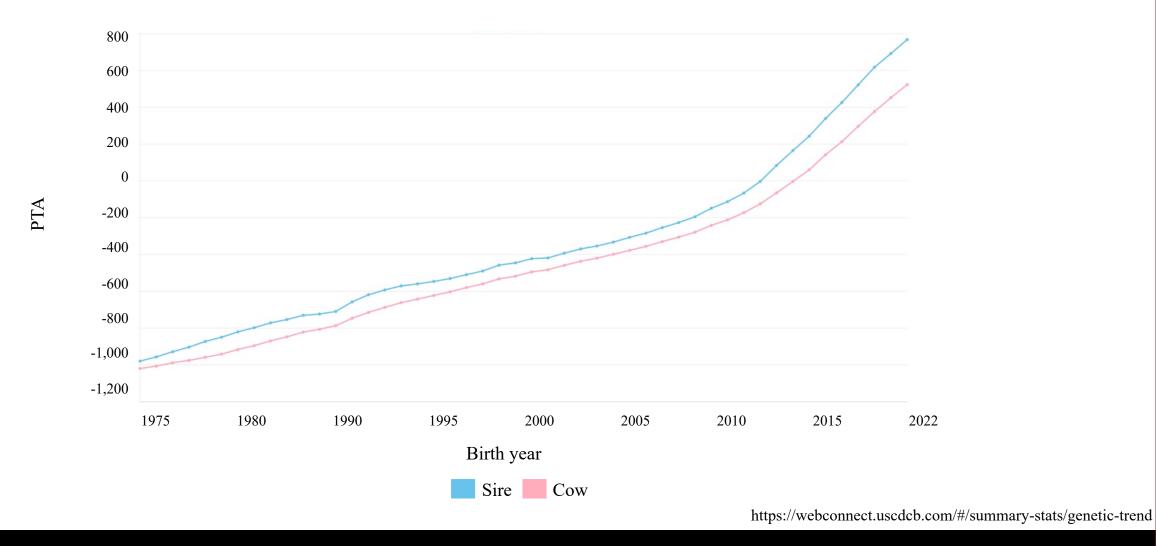
J. M. Tabet^{1*}, D. Lourenco¹, F. Bussiman¹, M. Bermann¹, I. Misztal¹, P.M. VanRaden³, Z. G. Vitezica⁴ and A. Legarra²

¹ Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA

² Council on Dairy Cattle Breeding, Bowie, MD 20716

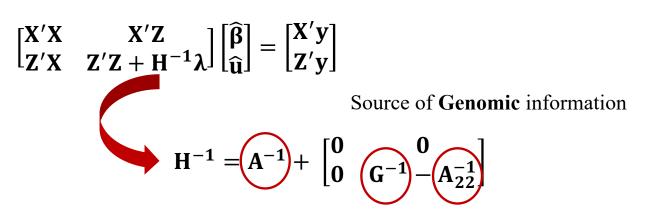
³U.S. Department of Agriculture, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705-2350, USA

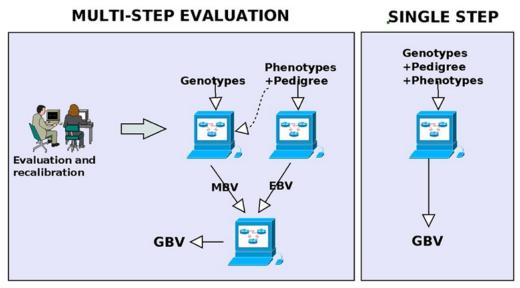

⁴GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France



Background

• Current U.S Dairy genetic evaluation method: Multistep process


Genetic trend of Net Merit for Holstein



Background

- Single-Step GBLUP (ssGBLUP), Aguilar et al., 2010; Chistensen and Lund, 2010; Legarra et al., 2009; Misztal et al., 2009
- Pedigree and Genomic information in the same evaluation

Source of **Pedigree** information

www.blnzgenetics.com/

Motivation to use ssGBLUP

• One single analysis

• Improved estimated breeding values for non-genotyped animals

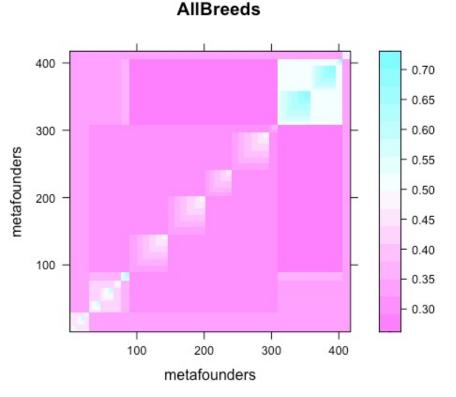
Avoid bias in trends of breeding values due to genomic preselection

Objectives:

• Assess the accuracy and potential biases of the ssGBLUP method when applied to all-breed U.S. fertility traits

• Compare Unknown Parent Groups (UPG) and Metafounders (MF)

	Number of records
Pedigree	93.4M
Genotypes	2M
Cow Conception Rate (CCR)	35.2M
Heifer Conception Rate (HCR)	11.5M
Daughter Pregnancy Rate (DPR)	89.6M
Early First Calving (EFC)	35.4M


https://www.hoards.com/

• Fertility traits are hard to evaluate due to low heritability, genetic correlations with milk yield, and changing management trends

- ssGBLUP approach:
 - Multibreed evaluation: Ayrshire (AY), Brown Swiss (BS), Guernsey (GU), Holstein (HO), Jersey (JE), Milking Shorthorn (MS) and Crossbreds (XX)
 - 2M genotypes
 - Have records or have progeny with records
- Algorithm for proven and young (Misztal et al., 2014) $\sim 45k$

Breed	# of Sires (Dams) in
	Core
AY	311 (1,175)
BS	611 (4,313)
GU	219 (3,258)
НО	6,890 (8,113)
JE	3,186 (11,883)
XX	141 (4,616)

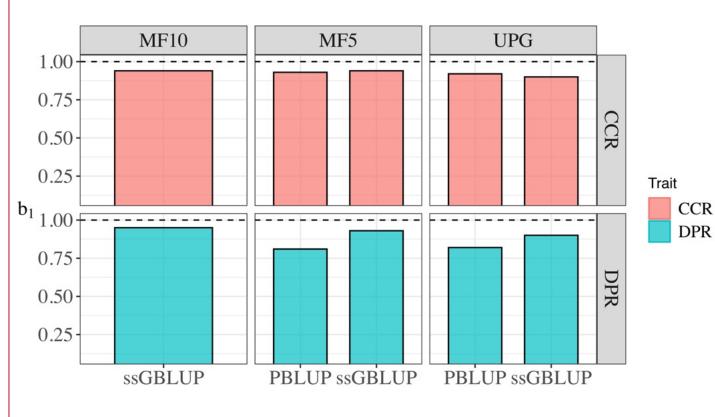
- Unknown Parent Groups models missing pedigree
- Metafounders is a generalization of UPG where groups are related among themselves
- 5% 10% missing pedigree

• Missing parents were defined by **breed**, **year of birth**, and **pathway** = 417 groups

Scenarios:

Traditional pedigree-based BLUP (PBLUP)

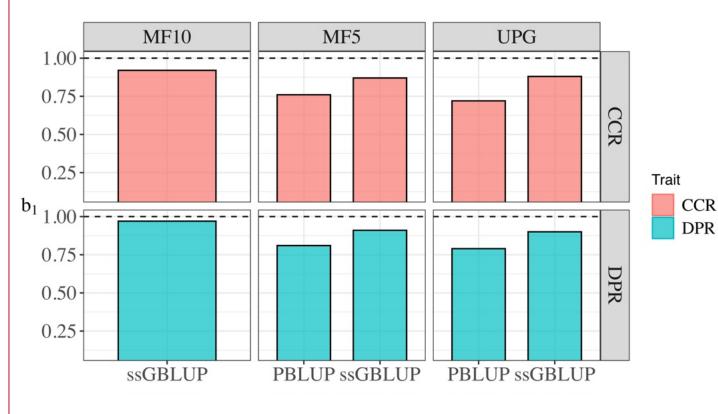
- UPG
- MF


ssGBLUP

- UPG
- MF5: 5% pedigree-based polygenic effect
- MF10: 10% pedigree-based polygenic effect

- Validation method
 - Linear Regression Validation (LR; Legarra and Reverter, 2018)
 - Two datasets
 - Whole dataset (w)
 - Partial dataset (p): Removed last <u>4 years of records</u>
 - Validation candidates have > 100 daughters in the whole dataset
 - Estimates:
 - Bias
 - Dispersion
 - Correlation

Results and Discussion


Dispersion in Holstein (HO) (G)EBV

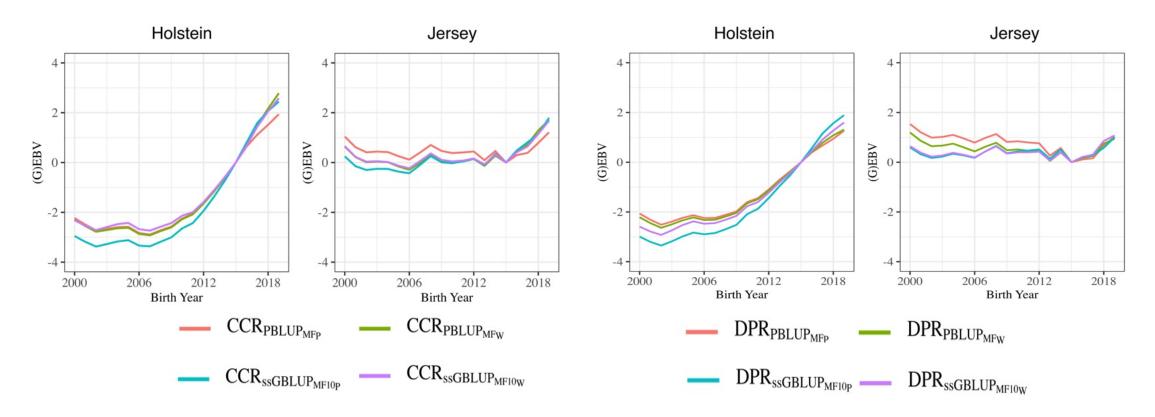
- Regression (G)EBV_w on (G)EBV_p
- Inflated EBV with BLUP
 - genomic preselection
- Less inflated GEBV with ssGBLUP
- MF had even less inflated predictions
 - $b_{1_{MF}}$: 0.93 0.95

Results and Discussion

Dispersion in Jersey (JE) (G)EBV

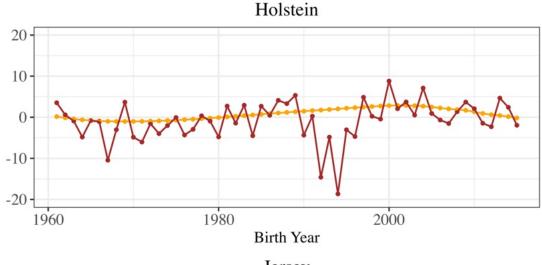
- Inflated EBV with BLUP
 - genomic preselection
- Less inflated GEBV with ssGBLUP
- MF had even less inflated predictions
 - $b_{1_{MF}}$: 0.90 0.97

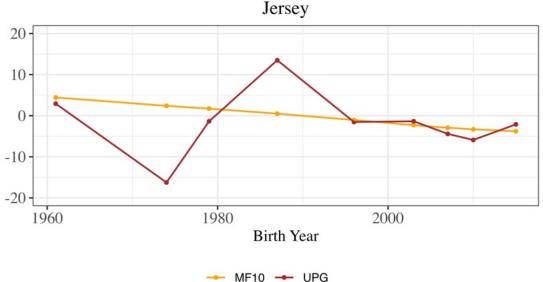
Results and Discussion


	Correlation of (G)EBV _w and (G)EBV _p					
$\mathbf{Breed}_{\mathbf{Trait}}$	SS	ssGBLUP			PBLUP	
	MF10	MF5	UPG	MF	UPG	
¹ HO _{CCR}	0.87	0.87	0.85	0.54	0.53	
¹ HO _{DPR}	0.90	0.90	0.89	0.49	0.50	
2 JE $_{CCR}$	0.88	0.80	0.81	0.56	0.54	
² JE _{DPR}	0.86	0.85	0.86	0.65	0.63	

¹HO_{CCR}; HO_{DPR}: CCR and DPR in Holstein

- Low correlations using pedigree-based BLUP
- Correlations using ssGBLUP_{MF10/5} $> 0.85 \rightarrow$ GEBV_{early} (partial) are good predictors of GEBV_{later} (whole)
- MF provided more stable GEBV


²JE_{CCR}; JE_{DPR}: CCR and DPR in Jersey


DPR and CCR Genetic Trends in Holstein and Jersey with Metafounders

The four trends with Metafounders exhibited a consistent direction with minor variations

CCR solution of UPG/MF including unknown sires of foreign dams

- Less heterogeneous behavior with MF
 - More stable estimates using MF

Conclusion

• Single-step GBLUP is a viable alternative to the current multistep procedure

• Metafounders yielded better results compared to Unknown Parent Groups

• Single-step GBLUP correctly captures the response to selection

Acknowledgements

Thank you

Any questions?