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Introduction

Ultrasound (Back Fat and Loin Depth)Key point measurementDirect measurement
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Introduction
v Objective

v Develop a low-cost machine learning pipeline based on 2D images to predict
v Body weight
v Backfat thickness
v Loin depth

v Benefits
v Less time-consuming
v More cost-effective
v Tracks daily gains, nutritional status, and health performance
v Contributes to breeding and genetic management programs
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Outline of Materials and Method

Image acquisition

Image processing

Feature extraction

Prediction
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Image acquisition – by PIC

v Uncontrolled 2-D side view of pigs
v Recorded 9K individuals at 60 frames per second
v Average recording duration was 7.19 seconds

v Measurements taken for each individual: 
v Body weight (WT) 
v Backfat thickness (BF)
v Loin depth (LD)
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Distribution of body weight, back fat, and loin depth
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Image processing: body segmentation (OpenCV)

Background/foreground segmentation using OpenCV

https://docs.opencv.org/3.4/d1/dc5/tutorial_background_subtraction.html
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Image processing: body segmentation (OpenCV)
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Image processing: body segmentation (deep learning)

Illustration of a corner case handled by deep learning 
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Feature extraction: VGG16

Convolution layer

Regularization layers

Pooling layer

Fully connected layer

Dropout layer
Softmax layer

Feature extraction

Classification/prediction

https://github.com/HarisIqbal88/PlotNeuralNet/tree/maste
r
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Feature extraction using pretrained VGG16
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Feature extraction: InceptionV3

Feature extraction using pretrained InceptionV3

https://cloud.google.com/tpu/docs/inception-v3-advanced
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Feature extraction: ResNet50

Feature extraction using pretrained ResNet50

https://doi.org/10.3390/diagnostics12081853
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Ridge 
regression

Linear 
regression

Lasso 
regression

Random 
forest 

regression

Neural 
network 

regression

Support 
vector 

regression

Feature extraction Prediction

Prediction: overview
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Prediction: cost function
Linear regression

Ridge regression

Lasso regression
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Results: model selection
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Ø Body Weight -> ResNet50 + Ridge

Ø Loin Depth -> ResNet50 + Ridge

Ø Back Fat -> ResNet50 + Ridge
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Results: prediction accuracy 

Source: Eric Psota, talk at AGBT-Ag 2024
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Results: prediction accuracy
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Results: actual vs predicted

Predicted average body weight 
for each individual

Corr: 0.89

Predicted average loin depth 
for each individual

Corr: 
0.54

Predicted average back fat 
for each individual

Corr: 0.48
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Conclusions

v Many previous studies were limited in quality, variability, and dataset size

v Employed various deep learning approaches to extract features

v Applied different regression models to predict outcome

v Pre-trained deep learning model can efficiently extract meaningful features 

v Enable large-scale digital phenotyping

v In our future work, we will use the extracted features for genomic predictions
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Thank you!
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