Decreasing computing time of approximated reliabilities of GEBV in ssGBLUP using different core sizes for APY

S. Sanchez-Sierra*, M. Bermann*, N. Vukasinovic†, D. Gonzalez-Peña†, G. Vargas†, M. A. Sánchez-Castro†, G. A. Oliveira Junior†, I. Misztal*, D. Lourenco*

*Department of Animal and Dairy Science, University of Georgia, Athens, GA 30605 †Zoetis Genetics, Kalamazoo, MI 49007

Motivation

> Direct calculation of PEV in large-scale evaluations is not feasible

- Several approximations exist
- > One of them is based on the algorithm for proven and young APY
- > Although precise, it can have high computing cost

Objective: Decrease the computing cost for approximating GEBV reliabilities in ssGBLUP by reducing the size of the core set in APY without affecting the quality of the approximations

Genomic reliabilities

➢ GBLUP with APY

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'X} & \mathbf{Z'Z} + \alpha \mathbf{G}_{APY}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix} \qquad \mathbf{G}_{APY}^{-1} = \begin{bmatrix} \mathbf{M}_{nn}^{-1} & \mathbf{G}^{nc} \\ \mathbf{G}^{cn} & \mathbf{G}^{cc} \end{bmatrix} =$$

$$\operatorname{diag}\left(\mathbf{Z}'\mathbf{Z} - \mathbf{Z}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Z} + \mathbf{G}_{\operatorname{APY}}^{-1}\right)^{-1} \approx \operatorname{diag}\left(\mathbf{W} + \mathbf{G}_{\operatorname{APY}}^{-1}\right)^{-1}$$

UNIVERSITY OF GEORGIA **ZOETIS**

ss30901@uga.edu <u>3</u>

ACCF90GS2

Bermann et al. (2022)

Reliability approximation using G-APY

 $\max\!\left(0(n_c^3), 0(n_n n_c^2)\right)$

ss30901@uga.edu <u>4</u>

Computing cost reduction

Smaller core blocks in G-APY lead to faster computations

To what extent will the quality of the reliabilities be affected?

Datasets

Trait	Pedigree	Genotypes	Records	Model	h^2
Calf respiratory disease	4.5 M	1.6 M	1.5 M	Repeatability	0.042
Cystic ovaries	427 K	107 K	127 K	Repeatability	0.054

Methods

Approximated reliabilities comparison under different core sizes in G-APY

Vs

Benchmark

Evaluation criteria

UNIVERSITY OF GEORGIA

zoetis

Scatter plots

Regression coefficients

Correlation coefficient

Absolute difference

Computing time

ss30901@uga.edu <u>8</u>

Calf respiratory disease

25K core vs 10K core 5K core

ss30901@uga.edu <u>9</u>

<u>25K vs 10K</u>

	Correlation	Intercept	Slope
New Core	1.00	-0.05	1.05
Noncore	1.00	0.14	0.87
Original core	0.98	0.25	0.75
Computing time (min)		25k	456.80
		10k	43.10

UNIVERSITY OF GEORGIA **ZOETIS**

<u>25K vs 10K</u>

.

Adjusted Reliability

$$rel_{25k} = a * rel_{10k}^b * e^{-c*rel_{10k}}$$

UNIVERSITY OF GEORGIA **ZOETIS**

2<u>5K vs 5K</u>

UNIVERSITY OF GEORGIA

	Correlation	Intercept	Slope
New Core	1.00	-0.16	1.15
Noncore	0.97	0.28	0.74
Original core	0.94	0.38	0.64
Computing time (min)		25k	456.8
		5k	11.1

zoetis

Genotyped animals reliability

<u>25K vs 5K</u>

Cystic ovaries

25K core vs 10K core 5K core

ss30901@uga.edu <u>14</u>

<u>25K vs 10K</u>

	Correlation	Intercept	Slope
New Core	1.00	0.00	1.00
Noncore	1.00	0.00	1.00
Original core	1.00	0.00	1.00
Computing time (min)		25k	7.44
		10k	2.54

<u>25K vs 5K</u>

	Correlation	Intercept	Slope
New Core	0.99	0.00	1.01
Noncore	0.99	0.02	1.01
Original core	0.99	0.02	1.01
Computing time (min)		25k	7.44
		5k	0.76

UNIVERSITY OF GEORGIA

Conclusions

- > Decreasing the core size in G_{APY}^{-1} significantly reduces the computing time when approximating reliabilities in large datasets
- Changes in the approximated reliabilities occur and depend on the Genotyped/Core animal proportion
- Nonlinear transformation of approximated reliabilities could help to improve the quality of the estimations
- > Parameters in the transformation are trait and model-dependent

Acknowledgments

