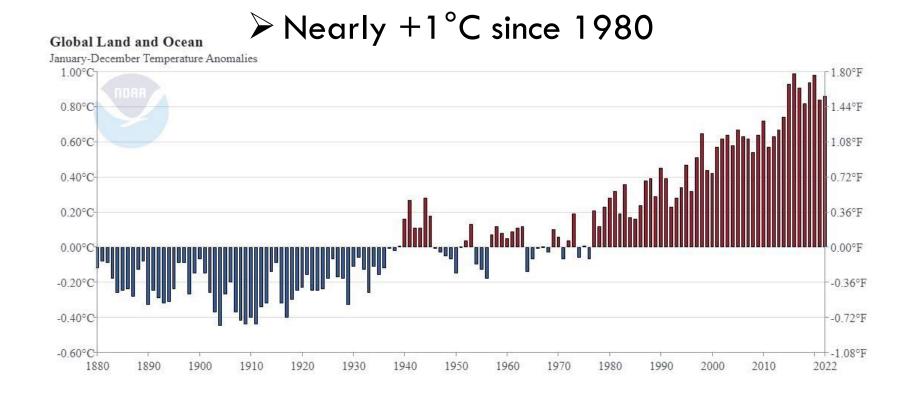


GxE with high-dimensional environmental data: correlated herd effects

Fernando Bussiman, D. Lourenco, C. Chen, J. Holl, I. Misztal, and Z. G. Vitezica

Animal Breeding and Genetics Group


College of Agricultural & Environmental Sciences

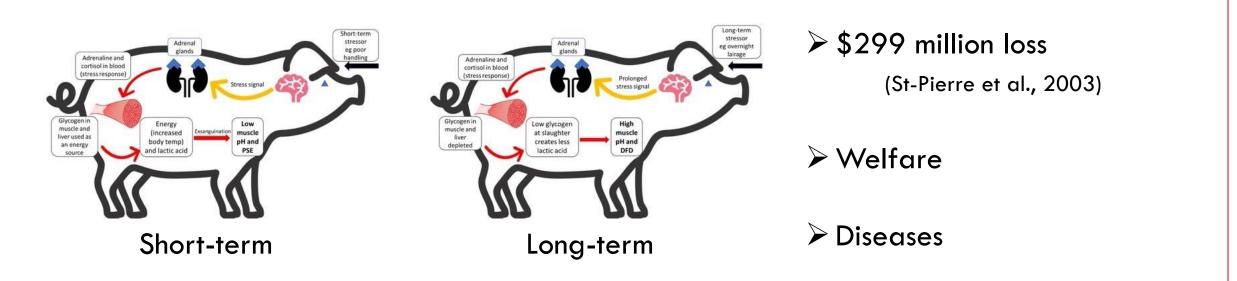
UNIVERSITY OF GEORGIA

PIC[®]

UNIVERSITY OF GEORGIA

National Centers for Environmental Information: https://www.ncei.noaa.gov/access/monitoring/monthlyreport/global/202213

fob@uga.edu <u>2</u>



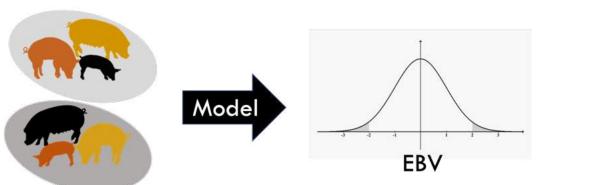
UNIVERSITY OF GEORGIA

 $\widehat{\Pi}$

Environmental effect:

- Seasonal productivity fluctuations
- Heat Stress

The Pig Site: https://www.thepigsite.com/articles/what-are-the-impacts-ofstress-on-pork-quality



> Environmental effect:

- > Seasonal productivity fluctuations
- Heat Stress
 - Sweat glands are not stimulated (Ingram, 1967)
 - > Max 50 % heat production dissipated by respiratory evaporation (Renaudeau et al., 2012)
 - Evidences of worsening with selection (Brown-Brandl et al., 2001)

> Environmental effect:

- > Seasonal productivity fluctuations
- Heat Stress
 - Sweat glands are not stimulated (Ingram, 1967)
 - > Max 50 % heat production dissipated by respiratory evaporation (Renaudeau et al., 2012)
 - Evidences of worsening with selection (Brwon-Brandl et al., 2001)
 - > Statistically

Fixed

 \succ What if:

- Herds are geographically close?
- Climate conditions are similar?
- Management/manager is the same?
- ≻ ...
- Correlated random herd effects

(Tiezzi et al., 2017; Selle et al., 2020; Cuyabano et al., 2021; Makanjuola et al., 2022)

Heat stress and climate effect:

- \succ Temperature and Humidity \rightarrow THI
- \succ Heat Load \rightarrow f(THI)
 - Same THI for all locations need to adapt (Bohmanova et al., 2007)
 - Temperature as good as THI (Dikmen and Hansen, 2009; Dado-Senn et al., 2023)

➤ Jarquín et al., 2014

- > To accommodate environmental covariates (EC) by (co)variance structures
 - Reduces number of parameters
 - Better characterization of the environment

Objective

To investigate GxE by using the (co)variances approach to model correlated herd effects and their impact on the prediction accuracy of genomic evaluation in pigs

Datasets Provided

Growth Purebred Pigs:

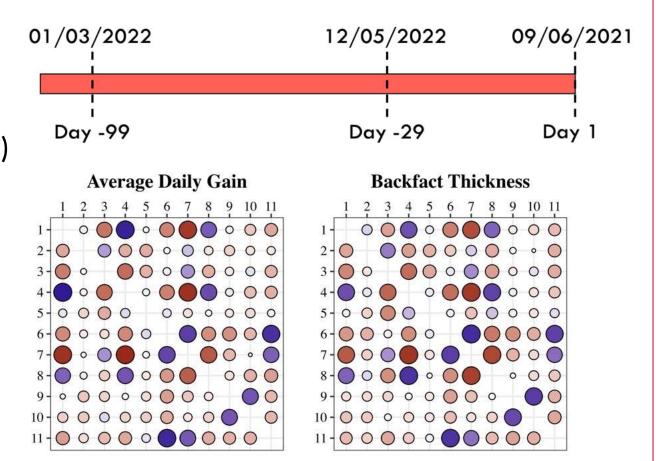
Average Daily gain (ADG)

- > 35,597 records
- All genotyped
- ➢ 11 farms
- Backfat Thickness (BFT)
- $70^{\circ}N$ $60^{\circ}N$ $50^{\circ}N$ $40^{\circ}N$ $30^{\circ}N$ $150^{\circ}W$ $100^{\circ}W$ $50^{\circ}W$ 0°

- > 32,105
- > All genotyped
- ➤ 11 farms

PIC[®]

50°E



Environmental Data

NASA POWER (<u>https://power.larc.nasa.gov/data-access-viewer/</u>) - EC

- T (Temperature °C)
- Td (Dew/Frost temperature °C)
- > Tw (Wet-bulb temperature $^{\circ}C$)
- \succ Ts (Earth surface temperature $^{\circ}$ C)
- \succ H (Relative humidity %)
- ➢ R (Rainfall − mm/day)
- > Ws (Wind speed m/s)
- > Md (Wind direction $^{\circ}$)

Linear Regression every 10 days

Model of Analysis

$$\geq$$
 ADG_{ijkl} = μ + CG_i + l_j + g_k + e_l + ϵ_{ijkl}

 $\geq BFT_{ijkl} = \mu + \beta_1 EW_k + CG_i + l_j + g_k + e_l + \epsilon_{ijkl}$

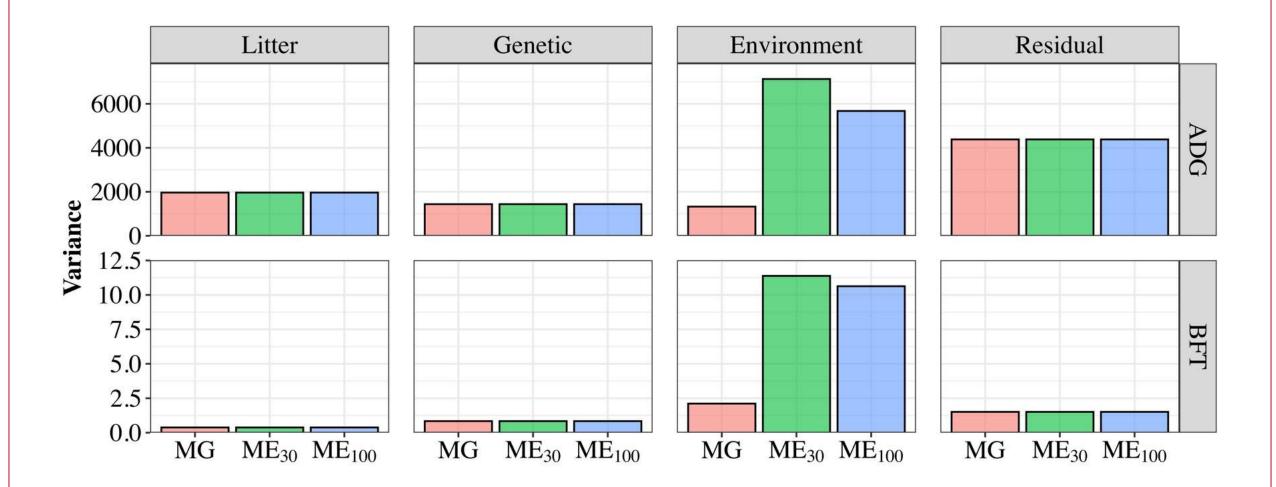
Validation

Focal animals - born in 2020

> One whole (w, from 2009 to 2020) and one partial (p, from 2009 to 2019) datasets

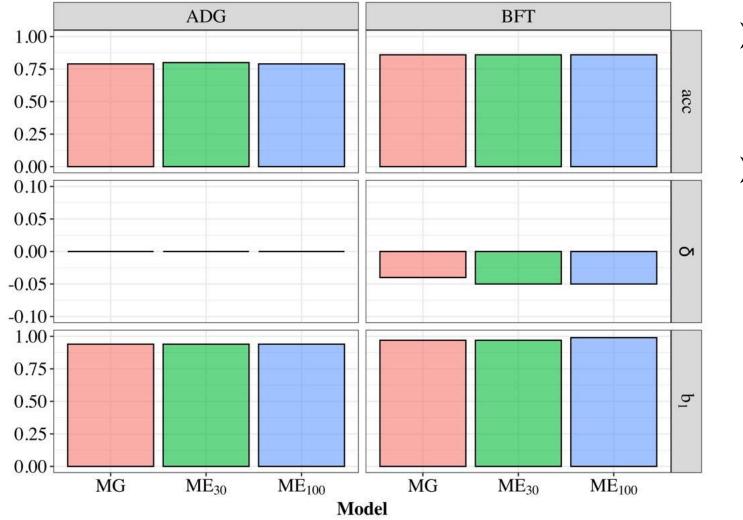
LR (Legarra and Reverter, 2018)

$$\succ \operatorname{acc} = \sqrt{\operatorname{cov}(\hat{\mathbf{g}}_{\mathrm{p}}, \hat{\mathbf{g}}_{\mathrm{w}})/(1-\overline{\mathrm{F}})\sigma_{\mathrm{g}}^{2}}$$


$$\succ \delta = \left(\overline{\hat{\mathbf{g}}}_{p} - \overline{\hat{\mathbf{g}}}_{w}\right) / \sigma_{g}$$

$$\geq b_1 = cov(\hat{\mathbf{g}}_p, \hat{\mathbf{g}}_w) / var(\hat{\mathbf{g}}_p)$$

UNIVERSITY OF GEORGIA



Variance Components

UNIVERSITY OF GEORGIA

Validation Statistics

No improvement in acc, bias, and dispersion

What if within environment?

No improvement also

$$\operatorname{Var} \begin{bmatrix} \mathbf{l} \\ \mathbf{g} \\ \mathbf{e} \\ \mathbf{c} \end{bmatrix} = \begin{bmatrix} \mathbf{I}\sigma_{1}^{2} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{G}\sigma_{g}^{2} & \mathbf{0} & \mathbf{0} \\ \mathbf{E}_{i}\sigma_{e}^{2} & \mathbf{0} \\ \operatorname{sym.} & \mathbf{I}\sigma_{e}^{2} \end{bmatrix}$$

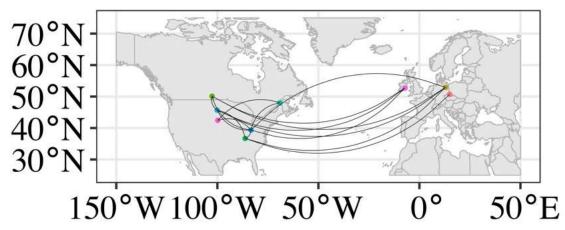
$$\operatorname{Eupp90 Programs}$$

$$\operatorname{EupP90 Programs}$$

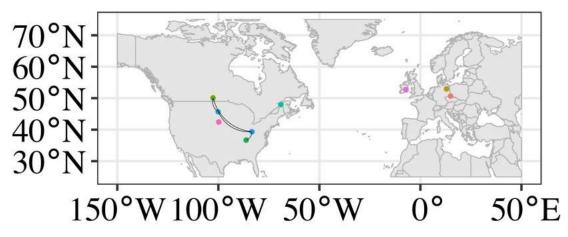
$$\operatorname{Cov}(\mathbf{g}, \mathbf{e}) = (\mathbf{G}\odot \mathbf{Z}_{4}\mathbf{E}_{i}\mathbf{Z}_{4}')\sigma_{ge}^{2}$$

$$\operatorname{Var} \begin{bmatrix} \mathbf{g} \\ \mathbf{e} \\ \mathbf{F} \end{bmatrix}$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}_{1}\mathbf{I} + \mathbf{Z}_{2}\mathbf{g} + \mathbf{Z}_{3}\mathbf{e} + \mathbf{Z}_{4}\mathbf{ge} + \boldsymbol{\epsilon}$$


$$\operatorname{Var} \begin{bmatrix} \mathbf{g} \\ \mathbf{e} \\ \mathbf{F} \end{bmatrix}$$

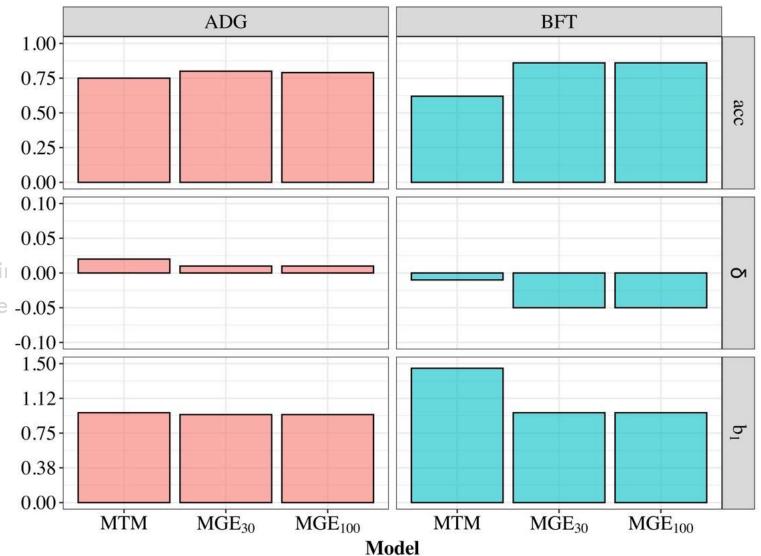
$$\operatorname{Var} \begin{bmatrix} \mathbf{g} \\ \mathbf{F} \end{bmatrix}$$


Two Questions

- \succ Is there GxE?
 - > MTM
 - \succ r_{geiej} < 0.80
 - Bending
 - Number or records/environment
 - Feeding and measurement systems
- Can we improve accuracy by including GxE?

Average Daily Gain

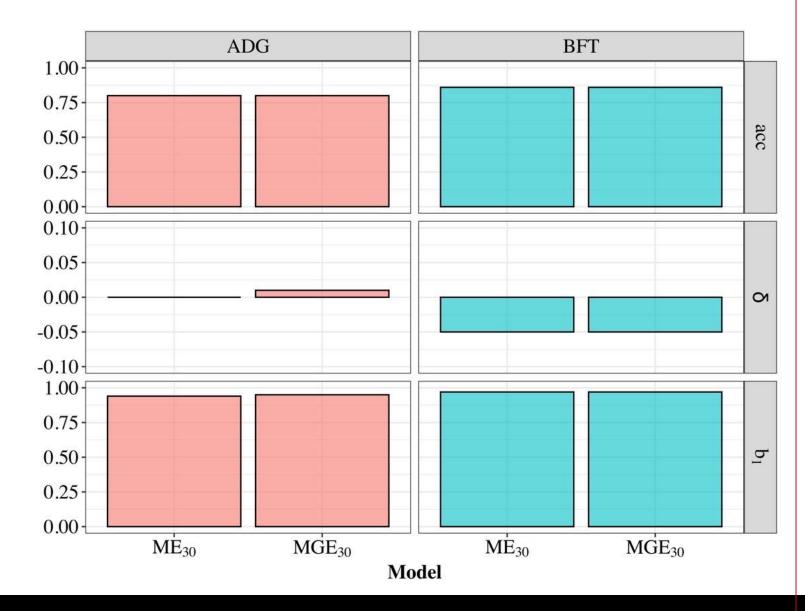
Backfat Thickness


Two Questions

► Is there GxE?

> MTM

- $r_{g_{eiej}} < 0.80$
 - Bending
 - Number or records/envir 0.00
 - Feeding and measureme -0.05


Can we improve accuracy by including GxE?

ME_{30} vs MGE_{30}

- No improvement in acc, bias, and dispersion
- ≻ MGE = ME?
 - Possibly no reranking

Remarks

 The (co)variances approach could increase accuracy when environment accounts for a lower proportion of phenotypic variance
 fixed herd effect is usually enough

Considering GxE where E is a correlated effect does not improve accuracy

> (Co)variances approach had higher accuracy than MTM for BFT

This model provides a "ge" breeding value – specific environmental change on the genotype (recalling MGE_i are analogous to a reaction norm, "g" acts a b₀ and "ge" as a b₁)

➤ Overall...

> Using outdoor EC to correlate environments has little benefit for genomic predictions

MGE would be better if "g" was observed in each different "e"

> MTM performs as good if there is borrowing of information

UGA – ABG Group http://nce.ads.uga.edu

Acknowledgements

Animal Breeding and Genetics Group College of Agricultural & Environmental Sciences

College of Agricultural & Environmental Sciences
UNIVERSITY OF GEORGIA

