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Digital phenotyping era

• Past the genomics era
• Great job genotyping animals

• Digital phenotyping era
• Time to invest in better phenotyping

• Main goal
• Consistent and accurate phenotypic measurements 
• Traits hard to record manually

• Increase the rates of genetic gain
• Several companies are investing in digital phenotyping 
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Digital phenotyping

Misztal (1986)



Digital phenotyping - decades apart

• Cameras and sensors 

• High-throughput phenotyping (phenomics): 24/7 collecting data

• Feed intake, grazing behavior, temperature, gas emission, fertility, weight, size, …

• Machine learning (artificial intelligence)

• Algorithms to automatically learn from the data and make predictions

• Expensive to teach a machine (computing resources and time)

• Image recognition comes with an appetite for computing power



$1000 of computing power
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Digital phenotyping projects

• Digital Foot and Leg Scoring (PIC -> UGA)

• Activity/Behavior Tracking (UGA + PIC)

• Predict production traits based on 2D images (UGA + PIC)
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Subjective foot and leg scoring
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Subjective foot and leg scoring

Ease of movement

Lameness observed
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Digital foot and leg scoring
• Over 100K records collected across sites and genetic lines

Training
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Digital foot and leg scoring

• Many features can be 
extracted from video

• Continuous values for digital 
leg scoring vs. discrete 
categorical scale from 1 to 9

• Helps on-site culling decisions
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Subjective vs. digital leg scoring

• Front Leg Scores

• Correlation Coefficient = 0.50
Rear Leg Scores

Correlation Coefficient = 0.57
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Subjective vs. digital leg scoring

Heritability increased almost 3x!

Trait Subjective Digital (CNN)

Front leg 0.21 0.60

rg 0.93

Rear leg 0.18 0.45

rg 0.96
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Digital behavior traits
Tracking individual-level activities for 14-hours per day for on-test group
• Eating
• Drinking
• Walking
• Posture (Standing, Sitting, Lying sternally, Lying laterally)
• 70-day tracking data on 2008 pigs = 140,560 data points

Objectives
• Quality control
• Identify behavior patterns
• Estimate genetic parameters
• Genetic correlations with ADG, BF, LD
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Digital behavior traits – noisy data

2,008 pigs x 70 days = 140,560 data points

Before Cleaning After Cleaning After Cleaning + Off-test

# Individuals 2008 1327 1079

# Records 140,560 77,423 71,873

• Removed:

• Start and end day records

• Culling day

• Days with < 8 hours
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Digital behavior traits – noisy data

2,008 pigs x 70 days = 140,560 data points

Before Cleaning After Cleaning After Cleaning + Off-test

# Individuals 2008 1327 1079

# Records 140,560 77,423 71,873
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Average digital behavior over 70 days

Distance

Eating time

Drinking time

Sternally lying

Laterally lying

Sitting

Standing
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Uncovering individual variations

By Individual
(within a group)By Group
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Phenotypic correlations

Eat Drink Lat. Lying Stern. Lying Sitting Standing Distance ADG BF LD

Eat 0.15 -0.31 -0.01 -0.04 0.59 0.26 0.06 0.05 0.05

Drink 0.03 -0.19 0.05 0.20 0.16 -0.02 0.05 -0.09

Lat. Lying -0.82 -0.20 -0.52 -0.23 -0.07 -0.00 -0.14

Stern. Lying 0.09 -0.03 -0.14 0.13 0.01 0.19

Sitting -0.14 -0.06 0.11 -0.02 0.09

Standing 0.63 -0.10 0.00 -0.06

Distance -0.18 -0.01 -0.14

ADG 0.29 0.52

BF 0.10

LD
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Heritabilities

• y = line + CG + litter + animal + residual

• CG: Off-TestDay_Year

• blupf90+

Heritability:
Growth rate: 0.25 to 0.35
Litter size: 0.10 to 0.15
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Genetic correlations

Eat Drink Lat. Lying Stern. Lying Sitting Standing Distance ADG BF LD

Eat 0.38 -0.40 -0.41 * 0.69 0.45 * 0.18 *

Drink -0.33 -0.43 0.26 0.62 0.44 0.32 0.18 *

Lat. Lying -0.84 -0.23 -0.72 -0.68 0.50 0.19 0.24

Stern. Lying -0.25 -0.62 -0.58 0.26 * *

Sitting -0.48 * 0.26 * 0.19

Standing 0.93 -0.56 -0.17 -0.37

Distance -0.57 -0.27 -0.48

ADG 0.56 0.84

BF 0.21

LD

*Estimates with high SE

• Quantifying the influence of selection for production traits on behavior traits
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How many days of recording?
• Can we reduce the recording time?
• When is the right time to record: early or late?

Distance – Recording Weeks
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Predicting production traits – 2D images

Masum Billah

• Same videos as for the foot and leg scoring

• Uncontrolled 2D side view of pigs

• 9K individuals at 60 frames per second

• Average recording duration was 7.19 seconds

• Develop a low-cost machine learning pipeline based on 2D images to predict

• Body weight

• Backfat thickness

• Loin depth
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Image processing

body segmentation (OpenCV)
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Image processing

body segmentation (deep learning)

Illustration of a corner case handled by deep learning 
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Actual vs. predicted phenotype

Predicted average body weight 

Corr: 0.89

Predicted average loin depth 

Corr: 0.54

Predicted average backfat 

Corr: 0.48
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Actual vs. predicted phenotype

Predicted average body weight 

Corr: 0.89

Predicted average loin depth 

Corr: 0.54

Predicted average backfat 

Corr: 0.48

• Low correlation for LD and BFT
• 3D cameras

• High correlation for BW
• Correlation < 1: how to model this noise in genomic prediction models?
• Which phenotype is more accurate?
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Take home message
• Capturing, cleaning, and processing digital phenotypes is challenging
• Large videos and many data points

• Machine learning techniques changed the game
• If a human can see it, machine learning techniques can detect it

• Opportunities for more precise phenotyping
• Higher heritabilities: categorical vs. continuous scale

• Opportunities for hard to record phenotypes
• Behavior traits for future selection

• Precision will increase with time: new methods and proper devices
• If there is uncertainty, how to model it in genomic evaluations
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