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Introduction

Genomic evaluations in dairy cattle are currently

performed using multiple-step procedures (Hayes

et al. 2009; VanRaden et al. 2009). A typical genomic

evaluation requires a traditional evaluation with an

animal model, extraction of pseudo-observations

such as deregressed evaluations or daughter devia-

tions, estimation of genomic effects for genotyped

animals, and their combination with traditional par-

ent averages and breeding values (Hayes et al. 2009;

VanRaden et al. 2009). Genomic effects can be esti-

mated with a simple model that includes a genomic

relationship matrix derived from genotypes and vari-

ances of the SNP marker effects (Nejati-Javaremi

et al. 1997; VanRaden 2007). It is worth noting that

these genomic relationship matrices are also used for

ancestry correction in genome-wide association stud-

ies (Astle & Balding 2009; Kang et al. 2010).

Recently, Misztal et al. (2009) proposed a single-

step evaluation in which the pedigree-based rela-

tionship matrix is augmented by contributions from

the genomic relationship matrix. Legarra et al.

(2009) derived a joint relationship matrix based on

pedigree and genomic relationships, and Aguilar

et al. (2010) described the inverse of the joint rela-

tionship matrix. A similar matrix and its inverse

were independently derived by Christensen & Lund

(2010).

VanRaden (2008) discussed methods to create

genomic relationship matrices. The kernel of such

methods involves multiplication of the matrix of

marker incidences (with dimension equal to number

of genotyped animals by number of SNP markers)
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Summary

Genomic evaluations can be calculated using a unified procedure that

combines phenotypic, pedigree and genomic information. Implementa-

tion of such a procedure requires the inverse of the relationship matrix

based on pedigree and genomic relationships. The objective of this study

was to investigate efficient computing options to create relationship

matrices based on genomic markers and pedigree information as well as

their inverses. SNP maker information was simulated for a panel of

40 K SNPs, with the number of genotyped animals up to 30 000. Matrix

multiplication in the computation of the genomic relationship was by a

simple ‘do’ loop, by two optimized versions of the loop, and by a specific

matrix multiplication subroutine. Inversion was by a generalized inverse

algorithm and by a LAPACK subroutine. With the most efficient choices

and parallel processing, creation of matrices for 30 000 animals would

take a few hours. Matrices required to implement a unified approach

can be computed efficiently. Optimizations can be either by modifica-

tions of existing code or by the use of efficient automatic optimizations

provided by open source or third-party libraries.
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by its transpose. Matrix operations can be imple-

mented efficiently using linear algebra kernels called

Basic Linear Algebra Subroutines (BLAS; http://

www.netlib.org/blas) (Dongarra et al. 1988, 1990b).

Optimized BLAS subroutines were developed by

Whaley & Dongarra (1998), and an open source of

these libraries is available as Automatically Tuned

Linear Algebra Software (ATLAS; http://math-atlas.

sourceforge.net). These libraries account for proper-

ties of a specific processor (memory speed and cache

size).

Modifications of current software to implement

the single-step approach (Aguilar et al. 2010) require

inverses of the genomic relationship matrix (G)

and the pedigree-based numerator relation-

ship matrix (A22) for genotyped animals. The

objective of this research was to present efficient

computing options to create these matrices and

their inverses.

Materials and methods

The inverse of the relationship matrix (H)1) based

on both pedigree and genomic information (Aguilar

et al. 2010) is

H�1 ¼ A�1 þ 0 0
0 G�1 � A�1

22

� �

where A)1 is the inverse of the numerator relation-

ship matrix for all animals, G)1 is the inverse of

the genomic relationship matrix for genotyped

animals, and A�1
22 is the inverse of the numerator

relationship matrix for genotyped animals. Modifi-

cations of current software for genetic evaluation

(Misztal et al. 2002; Tsuruta et al. 2001) require the

computation of G)1 and A�1
22 to use H)1 instead of

A)1.

For the purpose of testing the computation of

the genomic matrix, an incidence matrix of 40 K

SNP marker information (M) was simulated, with

values corresponding to gene content of the second

allele (0, 1 and 2) sampled from a uniform distri-

bution. The number of simulated genotyped ani-

mals varied from 1000 to 30 000, and no

relationship was assumed. Matrix A22 was con-

structed using the pedigree of 9 100 106 US Hol-

steins provided by Holstein USA Inc. (Brattleboro,

VT, USA).

Following VanRaden (2008), a centred matrix (Z)

was constructed by subtracting from M the matrix

P = 2p’1 containing the expected genotype frequen-

cies corresponding to allele frequencies p; then G

was constructed as

G ¼ ZZ0

k
:

where the scaling parameter k was

k ¼ 2
X

pjð1� pjÞ:

Computer memory hierarchy

In current computers, main memory is accessed via

a much faster but also much smaller cache memory

(Dongarra et al. 1990a). In operations limited by

computer memory access, speed is optimized by

maximizing reuse of data in cache memory and min-

imizing traffic from the main memory. As various

computers differ by size and characteristics of cache

and main memory, optimizations are computer

dependent. The optimal use of the memory hierar-

chy is important especially for computers with multi-

ple processors, where each processor has its own

cache, but the main memory is shared between pro-

cessors (Whaley & Dongarra 1998).

Methods

Computations of ZZ0=k were coded in Fortran 95

by 3 methods (Figure 1). The first method (ORIG)

consisted of nested ‘do’ loops, where centring the

matrix Z was through indirect memory access, and

matrix Z was not set up explicitly. In the second

method (OPTM), the matrix Z was centred outside

the main loop to avoid indirect addressing. In the

third method (OPTML), the main loop was split

into two loops. In each method, a table with

appropriate coefficients for centring, W, was pre-

computed. This table contains three rows indexed

by 0, 1 and 2 (i.e. gene content) and the j-th col-

umn contains )2pj, 1)2pj, 2)2pj, that is, the coeffi-

cients that are used in Z without computing P

explicitly. Having separate operations for matrix

multiplication and scaling allows the use of stan-

dard subroutines to compute ZZ’. Matrix multipli-

cations of the form ZZ’ were computed by the

original BLAS subroutine DGEMM and by its opti-

mized versions as in ATLAS or in the Intel Math

Kernel Library (MKL).

The scaling parameter defined as k = 2
P

pj(1 ) pj) assume that there is no missing genotype.

Formulae to account for missing genotypes per

animal were presented by VanRaden (2008). Codes

presented in the Figure 1 implemented such

formulae using a vector k, with dimension of num-

ber of genotyped animals, with elements ki = 2 R
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pj(1 ) pj)with the summation over the non-missing

loci of animal i.

The A22 should include information on all ances-

tors of genotyped animals. This matrix was com-

puted by two algorithms. The first one by the

tabular method (Emik & Terrill 1949) requires a

matrix of the size of all involved animals. The sec-

ond one by Colleau (2002) implemented as in Misz-

tal et al. (2009) requires only a matrix for genotyped

animals. The source code of the algorithm in Fortran

95 is shown in the Appendix.

Inversions of matrices G and A22 were computed

by converted Fortran 95 code of the generalized

inverse algorithm from the BLUPF90 package (Misztal

et al. 2002), which is based on the Cholesky decompo-

sition, and by the LU factorization using the DGETRF ⁄
DGETRI subroutines from LAPACK (Anderson et al.

1990). The Cholesky decomposition could be also per-

formed using the subroutines DPOTRF ⁄ DGETRI from

LAPACK; both subroutines are available either in

ATLAS or in MKL libraries. If G is singular, e.g. with

clones, VanRaden (2008) proposed using a weighted

matrix: Gw = w*G + (1 ) w)*A22.; weights of 0.95

and 0.98 yielded nearly identical EBV in Aguilar et al.

(2010).

Computations

All programs were run on an Opteron 64-bit proces-

sor with a clock speed of 3.02 GHz and a cache size

of 1 Mbyte. Some programs for G matrix inversion

were run on a Xeon 64-bit processor with a clock

speed of 3.5 GHz and a cache size of 6 Mbyte. Initial

software for the construction of G and for the tabu-

lar method was provided by P.M. VanRaden (USDA-

ARS, Animal Improvement Programs Laboratory,

Beltsville, MD,USA). Fortran programs were com-

piled by Intel Fortran Compiler with option -O3. For

parallel processing, automatic parallelization was

achieved by compiling with options that selected the

OpenMP package (http://www.openmp.org) imple-

mented in the MKL libraries.

Results and discussion

Computing times for alternative codes to create the

G matrix using two types of processing systems are

presented in Table 1. The ORIG method was 10

times slower on the Opteron system than on the

Xenon system. Large improvement was achieved

with OPTM on the Opteron but not on the Xeon

system. Faster computing on the Xeon system could

be because of larger cache size and different proces-

sor characteristics. Also, the Intel compiler could

work more efficiently in optimizing codes on Xeon

than on Opteron systems. Approximately four times

speedup was obtained on both computers with OPT-

ML, which is the code optimized for memory and

with loop rearrangement. Interestingly, in OPTML,

the whole construction of G is split into separate,

smaller problems: first build Z, compute ZZ’ and

standardize it. Clearly, this facilitates an automatic

optimization. Theses alternative codes were tested

using other compilers (Absoft and GNU Fortran) in

the Opteron system (results not shown). Similar

pattern in speedup was obtained with the Absoft

Original
(ORIG)

do i=1,n 
   do j=i,n
      S=0 
      do l=1,m 

  S=S+W(tM(l,i),l) 
            *W(tM(l,j),l) 
      end do 
      G(i,j)= S / 
             sqrt(k(i)*k(j)) 
      G(j,i)=G(i,j) 
    end do 
end do

Optimize memory & loops
(OPTML)

G=0
do l=1,m 
   Z(:,l)=W(M(:,l),l) 
end do 
do i=1,n 
   do j=1,n 
      do l=1,m 

G(i,j)=G(i,j)
         +Z(i,l)*Z(j,l)
      end do 
   end do 
end do 
do i=1,n 
   do j=1,n 
      G(i,j)= G(i,j) / 
             sqrt(k(i)*k(j) 
   end do 
end do

Optimize indirect memory access 
(OPTM)

do l=1,m 
   tZ(l,:)=W(tM(l,:),l) 
end do 
do i=1,n 
   do j=i,n
      S=0 
      do l=1,m 
         S=S+tZ(1,i) 
            *tZ(1,j) 
      end do 
      G(i,j)= S / 
             sqrt(k(i)*k(j)) 
      G(j,i)=G(i,j) 
   end do 
end do 

M = n by m incidence matrix of SNP markers, tM = M’, n = number of animals, m = number 
of markers; W = centered matrix with dimension 3 by m with values corresponding to gene 
content - 2pl ; pl= allele frequencies at locus l; k = n by 1 vector of scaling parameters.           

Figure 1 Alternative codes to compute ZZ’ ⁄ k.
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compiler. With the GNU Fortran, the vectorization

was not obtained and OPTML performed poorly.

Different algorithms to perform the matrix multi-

plication were tested with the Opteron system. Fig-

ure 2 shows the computing time for the BLAS

subroutine DGEMM, the modified code for memory

access and loop ordering (OPTML), and the DGEMM

optimized version as in ATLAS library. Relative per-

formance of the original DGEMM deteriorated with

the increasing number of individuals. The optimized

ATLAS-DGEMM subroutine was the fastest. The per-

formance of the optimized code for memory and

loop ordering shows a similar trend to that with

ATLAS-DGEMM, but is slightly slower.

Multiplication of large matrices requires an opti-

mization to use the cache memory fully, i.e.,

fine tuning for specific system architectures. Simple

modification to optimize indirect memory access was

successful in reducing the run time. Also, a simple

rearrangement of the matrix multiplication code,

splitting loops and avoiding static variables within

the loop seemed to allow some compilers to optimize

computer operations automatically (e.g. vectorization

of ‘do’ loops operations). Speedups were from 4 to

15 times, depending on the processor. However,

code generated by the ATLAS-DGEMM subroutine

ran the fastest with no additional programming

as it was automatically customized for a specific

processor.

Figure 3 shows results of the optimized imple-

mentation of the DGEMM subroutine with the

MKL library and up to 4 processors. The speedup

with four processors for 5000 genotyped animals

was 3.9, close to the ideal. Actual time to create G

for 40 K SNPs and 30 000 animals with four proces-

sors was 60 min. The operation required approxi-

mately 30 Gbytes of memory.

Creating A22 for 6500 genotyped animals using

the tabular method required 311 s and 12.1 Gbyte of

memory. The same computation with the Colleau

(2002) required 45 s and 322 Mbytes. Whereas the

tabular method requires storage for a dense matrix

for all genotyped animals and their ancestors

(approximately 57 000 individuals for 6500 geno-

typed animals), the Colleau method needs only a

few vectors with the dimension equal to the number

of genotyped animals. Memory requirements for the

tabular method can be reduced by splitting the

pedigree file into several groups, but at the cost of

Table 1 Computing time (m) for alternative codes for the creation of

the genomic relationship matrix using two types of processing sys-

tems1

Processor (clock speed) Cache memory size

Algorithms

ORIG OPTM OPTML

Xeon (3.5 GHz) 6 Mbyte 24 26 7

Opteron (3.02 GHz) 1 Mbyte 265 59 17

ORIG, Original code for creation the genomic relationship matrix;

OPTM, Optimized code to avoid indirect memory addressing; OPTML,

Optimized code to avoid indirect memory addressing and loop reor-

dering.
1Using 6500 animals and 40 K SNP markers.
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additional computations (P. M. VanRaden, personal

communication, 2009).

Computing times for inversion of different size

matrices with the generalized inverse algorithm and

optimized LAPACK subroutines using a single pro-

cessor are shown in Figure 4. For the largest matrix

(30 000 · 30 000), the inversion took approximately

13 h with the generalized inverse and 3.4 h with the

optimized LAPACK. Figure 5 shows speedup of the

parallel implementation using the DGEMM subrou-

tine in the MKL. Actual time to create inverse of G

for 40 K SNPs and 30 000 animals with four proces-

sors was <1 h.

Using all the optimizations for computing

G ¼ ZZ0=k, A22, G�1, and A�1
22 for 30 000 animals with

40 K SNPs the total time was approximately 3 h.

Conclusion

We presented methods for efficient computation of

matrices required for implementation of the single-

step procedure. Optimizations were by modification

of the code into simple and easy to optimize tasks by

some compilers, by using existing subroutines with

efficient automatic optimization provided as open

source, or by commercial libraries.
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