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Introduction

Genomic selection in dairy cattle generally follows

the multi-step procedures by VanRaden (2008). Tra-

ditional pedigree-based genetic evaluation is com-

bined with genotypic information of a subset of

animals. Typically, a traditional best linear unbiased

prediction (BLUP) evaluation is completed; pseudo

observations such as daughter yield deviations

(DYD) or deregressed evaluations are obtained for

each sire (Guillaume et al. 2008). Next, genomic

effects for each genotyped animal are estimated and

can be combined with traditional parent averages

and estimated breeding values (EBV). Increases in

reliability using this method can be large (VanRaden

et al. 2009). Inclusion of parent average is important

for increasing the accuracy of predictions (Vazquez

et al. 2010). The success of genomic selection in

dairy with such an implementation is because of a

large number of high-accuracy bulls.

An alternate strategy is to only use phenotypes of

genotyped animals directly for the genomic predic-

tion step (Dekkers et al. 2009). The increased accu-

racy using genomic information could compensate

for reduction in the number of phenotypes. Latest

results, however, indicate that maintaining a large
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Summary

Effects on prediction of analysing a multi-line chicken population as one

line were evaluated. Body weight records were provided by Cobb-Van-

tress for two lines of broiler chickens. Phenotypic records for 183 695

and 164 149 broilers and genotypic records for 3195 and 3001 broilers

were available for each line. Lines were combined to create a multi-line

population and analysed using a single-step procedure combining the

additive relationship matrix and the genomic relationship matrix (G). G

was scaled using allele frequencies from each line, the multi-line popu-

lation, or 0.5. When allele frequencies were calculated from each line,

distributions of diagonal elements were bimodal. When allele frequen-

cies were calculated from the multi-line population, the distribution of

diagonal elements had one peak. When allele frequency 0.5 was used,

the distribution was bimodal. Genomic estimated breeding values (GE-

BVs) were predicted using each allele frequency. GEBVs differed with

allele frequency but had ‡0.99 correlations with GEBVs predicted with

correct allele frequencies. Means of each line and differences in mean

between the lines differed based on allele frequencies. Assumed allele

frequencies have little impact on ranking within line but larger impact

on ranking across lines. G may be used to evaluate multiple populations

simultaneously but must be adjusted to obtain properly scaled estimates

when population structure is unknown.
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population size that maximizes phenotypic observa-

tions, while also using genomic information, is

superior to only using genotyped animals and pedi-

gree-only methods (Chen et al. 2011a; Wolc et al.

2011). The number of phenotypes necessary for a

given accuracy increases drastically as heritability

becomes lower (Hayes et al. 2009b), which was

evidenced in the study by Chen et al. (2011a).

One way to retain all phenotypes while simplifying

the computing procedure is to use BLUP with a rela-

tionship matrix that combines the genomic and pedi-

gree relationships (Legarra et al. 2009; Misztal et al.

2009). This procedure can be called single-step geno-

mic BLUP (ssGBLUP) because only one evaluation

combining information from genotyped and pheno-

typed as well as phenotyped-only animals is needed.

The inverse of the combined relationship matrix is

simple (Aguilar et al. 2010; Christensen & Lund

2010), and ssGBLUP is easy to apply without model-

ling restrictions. The ssGBLUP method was success-

fully applied in dairy (Aguilar et al. 2010), in pigs

(Forni et al. 2010) and in chicken (Chen et al. 2011a).

An important issue in the implementation of

ssGBLUP is the construction and scale of the geno-

mic relationship matrix (G). Allele frequencies are

used to construct G and can be assumed to have a

constant value at all loci (such as 0.5) or can be esti-

mated based on the allele frequencies in the popula-

tion of interest (VanRaden et al. 2008; Aguilar et al.

2010; Forni et al. 2010) In US Holsteins, the highest

accuracy EBVs were obtained using G assuming

equal gene frequencies (Aguilar et al. 2010) despite

the theory favouring the base population frequencies

(Gengler et al. 2007). Simianer reported that geno-

mic predictions in dairy obtained with different G

matrices are nearly identical (personal communica-

tion, 2010). Forni et al. (2010) used several G matri-

ces with ssGBLUP for litter size in pigs. The

estimates of variance components were unbiased

only when elements of G were scaled to be similar

to pedigree relationships; however, EBVs obtained

with different G were highly correlated. In a study

by Chen et al. (2011b), EBVs of genotyped animals

could be biased upward or downward depending on

assumed allele frequencies. The bias was eliminated

by scaling G to be compatible with pedigree-based

relationship matrix A. Vitezica et al. (2011) com-

pared two-step genomic evaluation using DYD and

ssGBLUP with simulated data under light and strong

selection and with genotyping for 10 generations.

With G constructed using the base allele frequencies,

the accuracy with ssGBLUP was 0.06 higher under

light selection but 0.05 lower under strong selection.

After calibration of G, ssGBLUP was always more

accurate, by 0.07 and 0.08, respectively. Thus, the

scaling of G seems important with limited pheno-

typic information and strong selection, but less

important or unimportant otherwise.

Simeone et al. (2011) examined distributions of

diagonal elements of G of one chicken line described

as in Chen et al. (2011a). After scaling G, most of

the diagonal elements were centred around 1.0;

however, a small fraction was centred around 2.0.

That fraction corresponded to genotypes from a dif-

ferent line that was included unintentionally. In

simulation, the distribution of the diagonal elements

of G was narrow unimodal with a single breed,

bimodal with two breeds of unequal size, and broad

unimodal with breeds of equal size. Thus, such a dis-

tribution is useful in identifying animals from differ-

ent lines, but not in every instance.

Many populations contain multiple lines or even

multiple breeds, e.g. in beef (Legarra et al. 2007). In

genetic evaluations using BLUP, using a single rela-

tionship matrix for all animals seems to be a satisfac-

tory solution to analysing multi-breed populations

(Lutaaya et al. 2002; Sanchez et al. 2008). A special

way to model different subpopulations in BLUP is by

unknown parent groups (Quaas 1988). However, in

ssGBLUP, the issue is complicated because of the

scaling of G; different breeds or lines are likely to

have alleles segregating at different frequencies.

When the breed composition is known, G may be

scaled as proposed by Harris & Johnson (2010).

However, such composition may not be known or

could be inaccurate. In populations where breed

composition is unknown and subsets of multiple

breeds may exist, it is unclear how EBVs will be

affected using different allele frequency calculations.

The general purpose of this paper is to examine

whether adjusting the scaling of G for different lines

or breeds influences ranking of animals within lines

or breeds. The specific purpose was to examine

changes of EBVs in analysis of two lines when G

was constructed with allele frequencies of either

line, the average allele frequencies of both lines, and

a constant 0.5.

Materials and methods

Data

Body weight at 6 weeks (100 g) was provided by

Cobb-Vantress (Siloam Springs, AR, USA) for two

lines of broiler chickens: A and B, each with three

generations. Phenotypic records were available for
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183 695 and 164 149 broilers for lines A and B,

respectively. Subsets of these populations were geno-

typed and genotypic records were available for 3195

and 3001 broilers for lines A and B, respectively;

animals of both sexes were genotyped. Genotyped

animals were available for all three generations for

each line; the third generation consisted only of

genotyped animals. Animals from lines A and B

were genotyped for the same 57 636 SNPs, and all

SNPs were used in the analysis. Frequencies of the

second allele at each locus were calculated for each

line and ranged from 0 to 1 at each locus. Second-

allele frequencies at each locus between lines A and

B were moderately correlated (r = 0.57), indicating

that differences in frequencies at loci existed. Of

57 636 SNP, 480 (0.83%) had a second-allele fre-

quency of <0.2 in line A and >0.8 in line B; 468

(0.81%) had a second allele frequency of <0.2 in

line B and >0.8 in line A.

The data sets for Lines A and B were concatenated

to create a multi-line data set. Descriptions of the

phenotypic data for all animals and genotyped ani-

mals in lines A and B, and the multi-line population

are provided in Table 1. Lines A and B were analy-

sed separately with and without genomic data to

establish GEBVs and EBVs using the correct popula-

tion structure and allele frequencies. G for the

multi-line population was scaled using allele fre-

quencies computed from line A or line B, estimated

from the multi-line population, or using the constant

0.5. The multi-line population was split into a train-

ing data set, consisting of all animals from the first

two generations, and a validation data set, consisting

of all animals with phenotypes and genotypes from

the third generation. Animals in the validation data

set included offspring from the training data set. The

training data set included 290 632 animals (155 811

from line A and 134 821 from line B), and the vali-

dation data set included 1597 animals (798 animals

from line A and 799 animals from line B).

Model and analysis

A single-trait model was used for the analysis:

y ¼ XbþWmpþ Zuþ e;

in which y was a vector of BW observations; X, W

and Z were the appropriate incidence matrices relat-

ing observations to animals; b was a vector of fixed

effects for hatch and sex, mp was a vector of ran-

dom maternal permanent environmental effects, u

was a vector of random additive genetic effects that

integrated polygenic and genomic breeding values

(Aguilar et al. 2010) and e was a vector of residuals.

Line was not included in the model in order to ana-

lyse the combined data set as if no knowledge of

two different lines existed. Variance components for

the multi-line population were estimated using

REML as r2
mp ¼ 0:23, r2

u ¼ 0:83, and r2
e ¼ 3:77, with

h2 = 0.17. These estimates were comparable to those

within line estimates from Chen et al. (2011a), with

h2 = 0.20and h2 = 0.17, for lines A and B, respec-

tively. Analysis was carried out as in Chen et al.

(2011a) and used the combined genomic and pedi-

gree relationship matrix, H.

The genomic relationship matrix of all genotyped

animals was constructed as in VanRaden (2008) as

G ¼ ZZ0=2
P

pið1� piÞ, where Z is equal to M-P, M

is a matrix of marker alleles

¼
0
1
2

8<
: ;

and P is equal to two times the second allele fre-

quency at each locus. Lines A and B were analysed

separately using traditional BLUP evaluation (Tradi-

tional) and ssGBLUP using second-allele frequencies

calculated from the individual populations (ssGBLUP

(A) and ssGBLUP (B), respectively). The multi-line

population was analysed with ssGBLUP using line A

second-allele frequency (Multi-A), line B second-

allele frequency (Multi-B), the second-allele fre-

quency estimated from the combined population

(Multi-AB), and using 0.5 as a constant allele fre-

quency at all loci (Multi-0.5). Correct scaling of G

depends on correct estimation of allele frequencies

Table 1 Descriptions of the phenotypic data for body weight for all

animals and genotyped animals in lines A and B, and the multi-line

population1

Line No. of records Mean (SD)

A

All animals 183 695 24.50 (3.22)

Genotyped animals2 3195 25.12 (2.97)

B

All animals 164 149 23.53 (3.17)

Genotyped animals 3001 23.39 (2.63)

Multi-Line3

All animals 347 844 24.04 (3.24)

Genotyped animals 6196 24.28 (2.94)

1Phenotypic data for body weight (100 g) at 6 weeks existed for two

lines of broiler chickens, A and B, over three generations.
2Genotyped animals represent subsets of lines A and B with both phe-

notypes and genotypes.
3Multi-line represents both lines A and B treated as one data set.
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and animals with genotypes that are dissimilar to

the calculated allele frequencies will likely have ele-

ments of G that are scaled inappropriately. Diagonal

elements of G represent 1 plus the animal’s inbreed-

ing (VanRaden 2008). The distributions of the diago-

nal elements of G for each animal at each allele

frequency were plotted. Off-diagonal elements,

which represent animals’ relationships with other

animals, are also affected by the second-allele fre-

quencies used to scale G (VanRaden 2008). Statistics

of the off-diagonal elements of G were examined to

see how the use of different second-allele frequen-

cies affected relationships among animals.

GEBVs were predicted for all animals in the vali-

dation data set from the multi-line population using

second-allele frequencies from line A, line B, the

multi-line population and constant 0.5. GEBVs from

the multi-line population analysis were separated

into GEBVs for line A and B and were correlated

with the GEBVs obtained when line A and line B

were analysed alone as well as EBVs obtained with

no genomic information.

Results and discussion

To examine how the construction of G changed as

a result of differences among the second-allele fre-

quencies, the distributions of the diagonal elements

of G were plotted after each analysis (Figure 1).

When the second-allele frequencies from either line

A or line B were used, two distinct peaks appeared

in the distributions. When the second-allele fre-

quency from line A was used, the mean of the diag-

onal elements for line A animals was 1.00 (0.04)

and ranged from 0.56 to 1.40, while the mean of the

diagonal elements for line B animals was 2.04 (0.09)

and ranged from 1.61 to 2.17. Similarly, when the

second-allele frequency from line B was used, the

mean of the diagonal elements for line A animals

was 2.16 (0.05) and ranged from 1.65 to 2.34, while

the mean of the diagonal elements for line B animals

was 1.00 (0.04) and ranged from 0.62 to 1.17. When

the second-allele frequency calculated from the

multi-line population or the constant 0.5 were used,

the distribution of the diagonal elements did not

behave the same way. Using multi-line second allele

frequencies, lines A and B were indistinguishable

from each other. Line A animals had a mean diago-

nal element of 1.14 (0.03) and ranged from 0.72 to

1.42, while line B animals had a mean diagonal ele-

ment of 1.13 (0.04) and ranged from 0.77 to 1.53.

The overall mean of the diagonal distribution using

multi-line allele frequencies was 1.15 (0.05). The

single peak in the distribution indicates that it may

be possible to use multi-line populations by estimating

a combined allele frequency. The expected mean of

F
re

qu
en

cy

Diagonal element

0
50

100
150
200
250
300
350
400

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

2.
2

Diagonal  elements using line A allele
frequency 

0
50

100
150
200
250
300
350
400

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

2.
2

2.
3

Diagonal elements using line B allele
frequency

0

100

200

300

400

500

600

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Diagonal elements using multi-line
second allele frequency

0

100

200

300

400

500

600

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

Diagonal elements using 0.5 allele
frequency

A B AB

(a) (b)

(c) (d)

Figure 1 Distributions of the diagonal elements of G constructed with second-allele frequencies from line A (a), line B (b), the multi-line population

of A (c) and B, and 0.5 (d). Distributions are shown on different scales.
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the diagonal elements is 1.0 when the founder pop-

ulation is unrelated; in this population, the founder

population included the first generation of geno-

typed and ungenotyped animals. Use of genotypes

detects relationships not present when using pedi-

gree alone, and thus, the larger value of diagonals

may better represent animal inbreeding. Using the

constant second-allele frequency of 0.5, diagonal ele-

ments of lines A and B overlapped but the distribu-

tion was bimodal. Line A animals had a mean

diagonal element of 1.42 (0.03) and ranged from

0.89 to 1.52, while line B animals had a mean diago-

nal element of 1.39 (0.03) and ranged from 1.06 to

1.79.

When the second-allele frequencies of line A were

used, the off-diagonals of G ranged from )0.18 to

2.15 and had a mean of 0.25 (0.49). When the sec-

ond-allele frequencies of line B were used, the off-

diagonals of G ranged from )0.16 to 2.29 and had a

mean of 0.29 (0.53). When the second-allele fre-

quencies of the multi-line population were used, the

off-diagonals of G ranged from )0.36 to 1.21 and

had a mean of 0.00 (0.27). When the constant 0.5

was used, the off-diagonals of G ranged from )0.11

to 1.45 and had a mean of 0.5 (0.19). Negative off-

diagonal elements represent individuals sharing

fewer alleles than would be expected, given the

allele frequencies used to scale G (Astle & Balding

2009). Combining lines A and B likely created rela-

tionships among animals that did not exist because

of SNP markers that were identical by state rather

than identical by descent.

After the evaluation of the multi-line population,

GEBVs for animals in the validation data set were

separated into those for animals from line A or line

B and then correlated with GEBVs or EBVs obtained

from prior analysis using either line A or line B and

the correct second-allele frequency for each (GEBVA

and GEBVB, EBVA and EBVB). This was completed

for each of the four second-allele frequencies used.

Statistics for GEBVs estimated for the validation data

set from the multi-line population are presented in

Table 2, and correlations between GEBVs and EBVs

are provided in Table 3.

GEBVs and EBVs estimated for the single popula-

tions were obtained. EBVs predicted with traditional

BLUP evaluation had a mean of )0.14 (0.47) for

Line A and )0.28 (0.34) for Line B, while GEBVs

predicted using the correct allele frequencies for

each line had a mean of 0.07 (0.59) for Line A and

0.00 (0.47) for Line B. GEBVs were slightly larger

compared with EBVs when genomic information

was included in the evaluation; moreover, the

ranges of GEBVs were larger than those of EBVs for

both Line A and B. Forni et al. (2010) also found

that means of GEBVs change with different G. The

mean differences between GEBVs of line A and B

varied from )0.52 to 0.07. Thus, ranking across line

may change with different G. The closest mean dif-

ference to that of BLUP (traditional; )0.42) was

obtained by G using 0.5 allele frequencies (0.52).

This allele frequency resulted in highest accuracy

and minimum bias in the study by Aguilar et al.

(2010). Mean GEBVs for Lines A and B varied based

on second-allele frequency used. Mean GEBVs for

animals in either line were closest or equal to

GEBVA or GEBVB when the correct second-allele fre-

quency for Line A or B was used but the ranges of

GEBVs changed. Use of second-allele frequencies

that did not correspond to a line resulted in

decreased estimates of GEBVs compared with GEBVA

or GEBVB, but means were similar to those esti-

mated without genomic information. Use of the

multi-line second-allele frequency resulted in

inflated (Line A) or deflated (Line B) GEBVs com-

pared with GEBVA and GEBVB, respectively. Use of

0.5 second-allele frequency resulted in deflated GE-

BVs for both Line A and Line B compared with GE-

BVs and EBVs. While mean values indicate

differences in GEBV predictions, the correlations

between GEBVs from Line A animals and GEBVA

were all 0.97, and correlations between GEBVs from

Table 2 Statistics for GEBVs and EBVs estimated for the multi-line

population1

Population Mean (G)EBV (SD) Minimum Maximum

Line A, traditional )0.14 (0.47) )1.32 1.01

Line A, SSP2 (A) 0.07 (0.59) )1.71 1.70

Multi (A) 0.07 (0.60) )1.75 1.76

Multi (B) )0.12 (0.60) )1.96 1.54

Multi (AB)3 0.13 (0.58) )1.64 1.70

Multi (0.5) )0.18 (0.53) )1.81 1.29

Line B, traditional )0.28 (0.34) )1.31 0.69

Line B, SSP (B) 0.00 (0.47) )1.51 1.31

Multi (A) )0.25 (0.47) )1.74 0.93

Multi (B) 0.02 (0.49) )1.54 1.25

Multi (AB) )0.06 (0.47) )1.49 1.11

Multi (0.5) )0.34 (0.42) )1.64 0.76

1The combined population consisted of animals from lines A and B.

After genomic evaluation, GEBVs obtained for animals in the third gen-

eration were separated into those belonging to A or B. Frequencies

used to scale G are in parentheses. This frequency was used to scale

the genomic relationship matrix.
2Single-step procedure.
3AB refers to the second-allele frequency calculated from the multi-line

population.
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Line B and GEBVB were all 0.96, indicating that

despite differences in predictions, animals were

ranked appropriately and the combined population

could be used if differences in lines were unknown.

Forni et al. (2010) also observed that although the

mean and the SD of GEBVs changed with different

G, GEBVs were highly correlated. Chen et al.

(2011b) found that mean GEBVs of genotyped ani-

mals compared with GEBVs of all animals changed

with scale of G. Thus, an incorrect scale of G can

bias GEBVs of genotyped animals relative to GEBVs

of ungenotyped ones. Incorrect G can affect compar-

isons across generations and between genotyped and

ungenotyped animals. In this study, we looked at

GEBVs of genotyped animals only and incorrect scal-

ing of GEBVs did not change rankings. Vitezica et al.

(2010) observed less accurate GEBVs with incor-

rectly scaled G but only under strong selection and

when genotyping was across 10 generations.

Slight differences were observed between GEBVs

from the multi-line population and EBVA and EBVB.

Correlations between line A GEBVs and line A EBVs

were 0.72 using second-allele frequencies from line

A, line B, and the multi-line population, and 0.75

using 0.5. Correlations between line B GEBVs and

line B EBVs were 0.55 for line A and line B, 0.56 for

the multi-line population and 0.59 for 0.5. These

correlations were slightly less than those between

correctly estimated single-line GEBVs and EBVs. The

values of correlations between GEBVs and EBVs are

hard to assess, especially because the correlations

among GEBVs were all 0.99 or higher. Therefore,

the type of G is not critical when selecting within

lines but is critical when ranking across lines as the

mean difference of GEBVs would differ based on the

scaling of G. The prediction of GEBVs is of primary

interest to animal breeders. Inclusion of genomic

relationship information allows for more accurate

predictions by constructing relationships based on

shared alleles instead of expected relationships (Van-

Raden 2008; Hayes et al. 2009b). Rather than using

prediction equations to estimate SNP effects, as in

Meuwissen et al. (2001), G utilizes information by

more accurately reconstructing family relationships

and also can be combined with a pedigree relation-

ship matrix (Aguilar et al. 2010; Christensen & Lund

2010). Use of multiple populations in one evaluation

has proven difficult because differences in allele fre-

quencies between breeds should be taken into

account (Harris & Johnson 2010). In this case, GEBV

estimates were inflated or deflated depending on the

second-allele frequency used to scale G. Animals do,

however, appear to be ranked the same regardless of

the allele frequency used to scale G, though this

ranking is different from that using traditional BLUP.

This indicates that it may be possible to use com-

bined allele frequencies to analyse multiple popula-

tions. It is possible to scale the difference between G

and A in the construction of the combined genomic-

pedigree relationship matrix in order to reduce dif-

ferences in GEBVs, and this could prove to be a

valuable tool in multi-line evaluations (Vitezica

Table 3 Correlations between GEBVs and EBVs for lines A, B, and the multi-line population using different allele frequencies1

Line A (G)EBVs

Line A, traditional Line A, SSP (A) Multi (A) Multi (B) Multi (AB) Multi (0.5)

Line A, traditional 1.00 0.74 0.72 0.72 0.72 0.75

Line A, SSP (A) 1.00 0.97 0.97 0.97 0.97

Multi (A) 1.00 1.00 1.00 0.99

Multi (B) 1.00 1.00 0.99

Multi (AB) 1.00 0.99

Multi (0.5) 1.00

Line B (G)EBVs

Line B, traditional Line B, SSP (B) Multi (A) Multi (B) Multi (AB) Multi (0.5)

Line B, traditional 1.00 0.61 0.55 0.55 0.56 0.59

Line B, SSP (B) 1.00 0.96 0.96 0.96 0.96

Multi (A) 1.00 1.00 1.00 0.99

Multi (B) 1.00 1.00 0.99

Multi (AB) 1.00 0.99

Multi (0.5) 1.00

1Allele frequency used to scale G is in parentheses.
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et al., 2011). If the populations are clearly identified,

sections of G need to be scaled separately for each

populations and possibly crossbreds (Harris & John-

son 2010).

Allele frequencies for the same loci vary from pop-

ulation to population. Harris & Johnson (2010) indi-

cated that diagonal elements of G are distorted

when animals of different breeds are analysed

together, even if G is constructed by regression

methods without using second-allele frequencies. It

may be possible to use G as a diagnostic tool to iden-

tify population substructure (Simeone et al. 2011);

however, this does not occur in the multi-line popu-

lation because of the large number of shared SNP.

Separation of populations will occur only when

allele frequencies between populations are very dif-

ferent. If the two populations have similar allele fre-

quencies or similar numbers of animals exist in

each, it may be almost impossible to differentiate

between the two using diagonal elements if G is

scaled using the combined population second-allele

frequencies. If some other allele frequency is used in

place of the current allele frequency, it may be pos-

sible to separate two, equally sized, similar popula-

tions. When the constant 0.5 was used to scale G,

the distribution of diagonal elements overlapped but

showed two distinct peaks, indicating that multiple

populations may be detectable but not necessarily

separable prior to analysis.

Use of G avoids the problem of population sub-

structure by estimating relationships rather than SNP

effects (Hayes & Goddard 2008); with a dense

enough marker map it may not be necessary to

worry about population structure (Toosi et al. 2010).

Alternatively, clustering methods can be used to

assign individuals to sub-populations (Pritchard et al.

2000) or principal component analysis can be used

to determine significant variation between popula-

tions of individuals (Patterson et al. 2006). This anal-

ysis indicates that even without taking population

structure into consideration, ranking of animals is

unchanged within line.

The use of correct allele frequencies, however, is

crucial to the construction of G because G is scaled

to be analogous to A using allele frequencies (Van-

Raden 2008). Animals that are homozygous for rare

alleles will tend to have a higher genomic inbreeding

coefficient than those who are not (VanRaden

2007); moreover, allele frequency estimation has

more of an effect on genomic inbreeding than on

genomic predictions (VanRaden et al. 2008). Differ-

ences in allele frequencies between populations indi-

cate that animals from one population will be

homozygous for alleles that a second population is

not. Use of incorrect allele frequencies can cause

apparent high inbreeding; additionally, increased

false relationships among animals that are also incor-

rectly scaled can inflate or deflate GEBV predictions

or cause incorrect ranking of animals in a popula-

tion.

Conclusions

Evaluation of two populations changed with the

allele frequency used to scale the genomic relation-

ship matrix. Using allele frequencies from line A,

line B, the multi-line population, or the constant,

0.5, resulted in inflated or deflated genomic breeding

values but showed strong correlations with GEBVs

or estimated breeding values obtained from single

lines. It may be possible to use G to evaluate multi-

ple populations simultaneously by using the average

allele frequency of the mixed population or by using

different approaches to separate subpopulations and

then scaling appropriately. This will be of great value

when presented with a data set of unknown popula-

tion structure.
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