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Summary

Prediction of genetic merit or disease risk using genetic marker information is becoming a common practice for
selection of livestock and plant species. For the successful application of genome-wide marker-assisted selection
(GWMAS), genomic predictions should be accurate and unbiased. The effect of selection on bias and accuracy
of genomic predictions was studied in two simulated animal populations under weak or strong selection and with
several heritabilities. Prediction of genetic values was by best-linear unbiased prediction (BLUP) using data
either from relatives summarized in pseudodata for genotyped individuals (multiple-step method) or using all
available data jointly (single-step method). The single-step method combined genomic- and pedigree-based
relationship matrices. Predictions by the multiple-step method were biased. Predictions by a single-step method
were less biased and more accurate but under strong selection were less accurate. When genomic relationships
were shifted by a constant, the single-step method was unbiased and the most accurate. The value of that
constant, which adjusts for non-random selection of genotyped individuals, can be derived analytically.

1. Introduction

Selection of economically important quantitative
traits in animals and plants is traditionally based on
phenotypic records of an individual and its relatives.
High-density panels of single-nucleotide polymorph-
isms (SNP) have recently been used to map genes of
domestic animal species and select desirable livestock
(Goddard & Hayes, 2009). The genetic merit of an
individual can be estimated by genome-wide marker-
assisted selection (GWMAS), also known as genomic
selection (Meuwissen et al., 2001). Such selection is
expected to improve the precision of genetic merit
predictions because some markers from a dense SNP
panel will be in linkage disequilibrium with quanti-
tative trait loci (QTLs) (Hayes et al., 2009). Genomic
selection will lead to faster genetic gain than that
achieved with traditional selection methods based on
pedigree and phenotypic data only.

Genome-wide evaluation methods use statistical
tools to combine phenotypes with high-density

marker data to predict the genetic merit of individuals
with complex traits. No agreement exists currently on
which genome-wide evaluation method is the most
appropriate (Daetwyler et al., 2010; Hill, 2010). Most
developments in genome-wide evaluation methods
published to date assume that all animals have been
genotyped. However, it is rarely the case, and most
often non-genotyped close family members exist
with phenotypic information (Garrick et al., 2009).
Ignoring this information results in less accurate pre-
dictions and possible bias because of selection
(VanRaden et al., 2009a, b). Unbiased predictions are
of paramount importance in selection for accurate
estimates of the genetic trend and also comparison of
animals across generations (Henderson et al., 1959).
The acceptance and wide use of genomic predictions
will largely depend on correct statistical modelling
and ease of breeder application. Therefore, a genetic
evaluation method that produces accurate and un-
biased predictions is critically important.

Combining pedigree, phenotypic and marker
information to calculate genomic predictions is a
challenge. The number of genotyped individuals is
extremely small compared with the total number of
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individuals. Some genotyped individuals (as in dairy
cattle) do not have a phenotype of their own. Thus,
most proposed methods currently are based on mul-
tiple-step procedures (VanRaden et al., 2009a). First,
phenotypic data from relatives are summarized to
create pseudodata for genotyped individuals (Garrick
et al., 2009); then in the second step, genomic predic-
tions are computed by a genome-wide method from
pseudodata and marker information. For example, in
dairy cattle, pseudodata for males are measures of
(precorrected) daughter performance called daughter
yield deviations (DYD). The use of DYDmay involve
several problems (VanRaden et al., 2009a, b) : infor-
mation loss of animals with few progeny, which leads
to accuracy loss ; heterogeneity caused by different
amounts of information in the original dataset ; and
bias (caused by selection). For other species (e.g.
sheep or swine) or traits (e.g. maternal traits), pseu-
dodata are more difficult to estimate or even define.
Thus, multiple-step methods of computing genomic
predictions are not only complicated but likely sub-
optimal for GWMAS.

Joint use of pedigree, phenotypic and genomic in-
formation should theoretically solve such problems.
A single-step method based on a linear mixed model
and a pedigree relationship matrix augmented with
genomic information has been developed recently
(Legarra et al., 2009; Aguilar et al., 2010; Christensen
& Lund, 2010). This method combines pedigree and
all available phenotypes and genotypes, needs no
creation of pseudodata, and it has been applied to
population sizes in the millions (Aguilar et al., 2010).
Further, the method is general with straightforward
extension to other models or species.

In traditional pedigree-based evaluation, all infor-
mation about selection decisions is included in phe-
notypes and the relationship matrix, and no bias
exists from the selection (Sorensen & Kennedy, 1984;
Im et al., 1989). However, how selection is accounted
for in GWMAS procedures is unclear, although this is
becoming a serious concern (Aguilar et al., 2010;
Mäntysaari et al., 2010; Chen et al., 2011). Models for
GWMAS implicitly assume an unselected genotyped
population (Hayes et al., 2009). However, in practice,
genotyped individuals are highly selected, and
GWMAS models do not take this selection into ac-
count. This is in contrast to classical procedures in
which models refer to a base unselected population.
Thus, GWMAS models appear to be unable to con-
sider past selection based on pedigree and pheno-
types, which might cause bias as well as accuracy loss.

The objective of this study was to investigate
how unbiased genetic values can be predicted by
GWMAS. The effects of selection and genome-wide
evaluation method (single- or multiple-step) on bias
and prediction accuracy were examined. The effect of
trait heritability was also investigated.

2. Materials and methods

(i) Theory

The single-step genomic prediction approach
(Legarra et al., 2009; Aguilar et al., 2010; Christensen
& Lund, 2010) is based on the model y=Xb+Zu+e,
where y is the phenotype vector, X and Z are inci-
dence matrices, b denotes fixed effects, e is the residual
and p(u)yN(0, Hsu

2) involves the genetic effect for
non-genotyped (u1) and genotyped (u2) individuals
and the genetic variance su

2. Here Hx1 is derived as in
Legarra et al., (2009) and Christensen & Lund (2010) :

Hx1= A11 A12

A21 A22+Gx1xAx1
22

� �
, (1)

where G is a genomic relationship matrix and

A= A11 A12

A21 A22

� �
and Ax1= A11 A12

A21 A22

� �
are the

pedigree-based relationship matrix and its inverse
partitioned into non-genotyped and genotyped in-
dividuals, respectively. Creation of H (and Hx1) can
be seen as a projection of genetic merit (or marker
genotypes) from genotyped to non-genotyped in-
dividuals using pedigree relationships (Legarra et al.,
2009; Christensen & Lund, 2010).

The pedigree relationship matrix A implies that the
mean genetic value of the base population is 0. Also,
according to VanRaden (2008) and Hayes et al.
(2009), the genomic relationship matrix G automati-
cally sets the mean genetic value of the genotyped
population to 0 if raw means in the genotyped popu-
lation are used to estimate current allele frequencies.
That is not the case if frequencies for the base popu-
lation are used, but accurate estimates of those
frequencies are difficult to obtain.

If selection occurs, the mean genetic value of gen-
otyped individuals (u2) on the scale of the whole
population (i.e. relative to the base population) may
have a value different from 0, say m. This would be
particularly true if genotyped individuals were elite
individuals or in the last generations of selection.
Let us assume that m is a random variable; for in-
stance, in (conceptual) repetitions of the selection
process, m will vary due to drift, in other words, be-
cause of finite sampling of replacement animals.
Thus, p(m)yN(0, asu

2) ; and, p(u2|m)yN(1m, Gsu
2),

where 1 is a vector of ones. Equivalently, p(u2|a)y
N(0, (G+11ka)su2).

As in Legarra et al. (2009), the distribution of
genetic values of non-genotyped individuals con-
ditioned on genetic values of genotyped in-
dividuals (using multivariate normality) is
p(u1|u2)yN(A12A22

x1u2, (A
11)x1 su

2), where (A11)x1=
A11xA12A22

x1A21. Thus, p(u1|a)yN(0, (A11)x1 su
2+

A12A22
x1(G+11ka)A22

x1A21su
2) and p(u)yN(0, H#su

2),
where H# is equivalent to H with G substituted for
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G+11ka. The mixed model equations are

XkX XkZ
ZkX ZkZ+H#x1l

� �
b

u

� �
= Xky

Zky

� �
,

where

H#x1= A11 A12

A21 A22+(G+11ka)x1xAx1
22

� �
: (2)

An equivalent model for unbiased genomic predic-
tions based on a genetic group model (Quaas, 1988) is
shown in the appendix.

To determine why m can be presumed as a random
variable and obtain the value of a, traditional best-
linear unbiased prediction (BLUP) will be assumed to
be unbiased and able to account properly for selection
and drift (Sorensen & Kennedy, 1984). We suggest
that the mean value m of genetic effects of genotyped
individuals u2 can be expressed as m=1

n
1ku2, where n is

the number of individuals. Since m is a function of
random variables, it is a random variable in itself. The
variable m can be estimated from either pedigree (mp)
or single-step (ms) procedures. If genetic prediction
based on pedigree (and phenotypic data) is unbiased
and accounts for selection and drift, the distribution
of mp accounts properly for bias, selection and drift as
well. The prior distributions for genetic values of u2
are u2pyN(0, A22su

2) and u2syN(0, (G+11ka)su2) ;
thus, the distribution of m is mp � N 0, 1

n2
1kA221s

2
u

� �
and

ms � N 0,
1

n2
1k(G+11ka)1s2

u

� �

=N 0,
1

n2
1k G+

a � � � a

..

. ..
.

a � � � a

2
64

3
75

0
B@

1
CA1s2

u

0
B@

1
CA:

Since the 1k1 are simply summations,

var(mp)=s2
u

1

n2
g
i

g
j

A22(i, j) (3)

and

var(ms)=s2
u a+

1

n2
g
i

g
j

Gi, j

 !
: (4)

In order to construct a model with features similar to
pedigree-based BLUP, we equate the two variances in
eqns (3) and (4) and this gives

a=
1

n2
g
i

g
j

A22(i, j)xg
i

g
j

Gi, j

 !
: (5)

Thus, a is simply the difference between means for A22

and G. The a accounts for the fact that genotyped
animals in u2 are more related through pedigree

(in reference to the base population), which is cor-
rectly considered in A22. The genomic relationship
matrix G does not correctly reflect this fact, especially
if current allele frequencies are used, which sets the
genomic base as the genotyped individuals (Oliehoek
et al., 2006; Van Raden, 2008). For G to be correct,
base allele frequencies would be required. In practice,
current allele frequencies are used because base allele
frequencies are difficult to estimate. For a population
of unrelated individuals where A22=I, a=0.

From Wright’s FST, another interpretation of a is
also possible. The FST can be defined as the mean re-
lationship between gametes in a recent population
with respect to an older base population (Cockerham,
1969, 1973; Powell et al., 2010). Then A22 involves
relationships of genotyped individuals with reference
to the base population, and G corresponds to re-
lationships within the current population.
Consequently, a is equal to twice FST; the factor of
two is needed because FST is referred to as co-ances-
tries, which are half individual additive relationships.
The correction suggested by Powell et al. (2010) is
Fold=Fnew+(1xFnew) FST, which is equivalent to
Gx= 1x1

2
a

� �
G+11ka and similar to our suggestion.

(ii) Simulations

To evaluate the effectiveness of the proposed ap-
proach for genomic prediction, two selection scenar-
ios with different heritabilities were simulated. The
simulator QMSim (Sargolzaei & Schenkel, 2009) was
used to generate historical (undergoing drift and mu-
tation) and recent (undergoing selection) population
structures. In total, 10 chromosomes of equal length
(100 cM) were simulated. Biallelic markers (10 000)
were distributed at random along the chromosomes
with equal frequency in the first generation of the
historical population. Potentially, 250 QTLs affect the
phenotype; QTLs allele effects were sampled from a
Gamma distribution with a shape parameter of 0.4.
The mutation rate of the markers (recurrent mutation
process) and QTL was assumed to be 2.5r10x5 per
locus per generation (Solberg et al., 2008).

First, a base population of 200 males and 2600 fe-
males was generated by mutation and drift over 100
generations (t) in a historical population with an ef-
fective population size of 100 (t=1–95) and gradually
expanded to 3000 offspring (t=100). Then, 10 gen-
erations (t=101–110) of selection for a sex-limited
trait with a phenotypic variance of 1 were simulated.
Three heritabilities (0.05, 0.30 and 0.50) were used to
examine the effect of heritability on genomic predic-
tions. In each generation, 200 males were mated to
2600 females to produce 2600 offspring following
random phenotype (PY) or positive assortative (mat-
ings among best males and females based on esti-
mated breeding values (EBVs) ; PEBV) designs. For the
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next generation, 80 males and 520 females were
selected based on PY or PEBV. For PEBV, EBVs were
computed in each generation with data accumulated
so far by a BLUP procedure that includes phenotypes
and pedigree, which mimics recent selection proce-
dures for livestock populations. At the end of each
simulation, true genetic values (TBVs) and pedigree
information were available for all ten generations
(28 800 individuals in pedigree), phenotypes were
available for all generations except for the last one
(13 100 records). All males (840 sires of females with
records) were genotyped as well as 260 individuals in
generation 110, which were potential candidates for
selection. No fixed effects were simulated. For each
scenario, 20 replicates were run.

(iii) Prediction methods

The 260 genotyped selection candidates in the last
generation were evaluated using genomic infor-
mation. Genetic merit of the selection candidates was
estimated using five methods based on BLUP. The
first method was a mixed model based on the pedigree
relationship matrix and phenotypes (BLUPPED). The
second method was a two-step procedure, in which
DYD were computed using a regular method based
on pedigree and phenotypes and then used for geno-
mic prediction (BLUPDYD). For BLUPDYD, 840
males were included with DYD information from 14
(¡10) daughters on average. The DYDwere weighted
by their accuracy. For the third method, the full data-
set (pedigree, phenotypes and genotypes) was di-
rectly used in a single-step procedure that used G

(BLUP1STEP). The fourth method (BLUPa) is also a
single-step procedure with the correction of genetic
differences among genotyped and non-genotyped
individuals simply by using H#x1, which uses
G#=G+11ka instead of G. The correction of G pro-
posed by Powell et al. (2010) was also implemented
using Gx= 1x1

2
a

� �
G+11ka and tested in a single-step

procedure (BLUPFST
).

All single-step methods (BLUP1STEP, BLUPa and
BLUPFST

) and BLUPDYD used G=ZZk=2gpi(1xpi),

where zi was coded as xpi or 1xpi for the first or
second allele, respectively, and pi is the allele fre-
quency of the second allele (VanRaden, 2008) com-
puted as raw mean from all available genotypes.

Prediction quality was checked for all 260 selection
candidates (validation data). Bias was measured
as the difference between predicted and simulated
breeding values of the candidates. Regression of TBV
on EBV was used as a measure of the inflation of the
prediction method, where a regression coefficient of
one denotes no inflation. Accuracy of evaluation
methods was computed as the square of the corre-
lation between TBV and EBV. In addition, prediction
error variance (PEV), which is a measure of candidate
prediction error, and mean-squared error (MSE),
which is a measure of overall fit of the model to the
data, were computed. Results were the mean of the
20 replicates of each scenario.

3. Results

(i) Correction factor

Table 1 shows mean a for the three heritabilities un-
der PY or PEBV. The variance a is higher for selection
predominantly on relatives (e.g. low heritability traits
under PEBV). Bias, inflation and accuracy of predic-
tions as a function of a for a given replicate are pre-
sented in Fig. 1. In the example, the theoretical value
of a according to eqn (5) was 0.07, which was a where
bias was close to zero but not the smallest. Optimally,

Table 1. Mean a for different heritabilities under PY

or PEBV selection

Selection
design

Heritability

0.05 0.30 0.50

PY 0.0045 0.0046 0.0047
PEBV 0.0834 0.0703 0.0615

a is the difference between pedigree-based and genome-
based relationships for genotyped animals ; selection was
based either on random phenotype (PY) or assortative
mating using EBV (PEBV).

1·
0

0·
5

0·
0

–0
·5

0·00 0·02 0·04 0·06 0·08 0·10

α

b
R2

BIAS

Fig. 1. Bias (dotted curve with solid circles), coefficient of
regression of true on EBV (b ; solid curve with squares),
and squared correlation between true and EBVs (R2 ;
dashed curve with circles) as functions of the correction
factor a (difference between pedigree-based and genome-
based relationships for genotyped animals) for a given
replicate with heritability of 0.30 under assortative mating
selection based on EBV.
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high accuracy (R2) and low inflation (b) should be
balanced to avoid large bias increases.

(ii) Bias

Table 2 shows TBV and EBV means from the five
prediction methods under PY or PEBV for the selection
candidates in the last generation. Mean TBV of the
last generation was 3.2–5.4 times larger for PEBV than
for PY. As expected, even with selection and different
heritabilities, BLUPPED predicted mean TBV cor-
rectly. The BLUPDYD and BLUP1STEP methods un-
derestimated mean TBV in the last generation, but
BLUPa and BLUPFST

were unbiased.

(iii) Inflation

The degree of inflation from the prediction methods
is indicated by the coefficient of regression of TBV

on EBV (Table 3). The optimal prediction method
of genetic merit of young individuals would have a
regression coefficient close to 1. For each scenario,
the differences between the methods were small, and
the approaches achieved very similar inflation. A
strong selection, under PEBV, increased inflation
with values lower than 1. According to Kennedy et al.
(1988) relationship matrix accounts for selection,
drift and non-random mating, but it does not account
for a wrong definition of the base population or a
finite number of loci. Potentially 250 QTLs affected
the phenotype, and so this discards the second reason.
Ideally, the base population should be infinite; this
is indeed not the case, and thus the first assumption
is violated. Consider animals 1 and 2 (e.g. father
and son). If they are related, the distribution of the
genetic value of 2 can expressed as conditioned on
the genetic value of 1. Thus, knowledge of the EBV of
1 would decrease uncertainty (variance) of the EBV
of 2. However, if this relationship is unknown, the
conditional distribution cannot be written. Thus,

Table 2. Means (SDs) of breeding values from
different heritabilities and prediction methods for
selection candidates under PY and PEBV

Heritability
Prediction
method PY PEBV

0.05 True value 0.09 (0.02) 0.49 (0.08)
BLUPPED 0.09 (0.01) 0.52 (0.07)
BLUPDYD 0.02 (0.01) 0.16 (0.03)
BLUP1STEP 0.05 (0.01) 0.24 (0.05)
BLUPa 0.08 (0.01) 0.52 (0.08)
BLUPFST

0.08 (0.01) 0.52 (0.07)

0.30 True value 0.53 (0.03) 2.01 (0.15)
BLUPPED 0.54 (0.03) 2.05 (0.14)
BLUPDYD 0.17 (0.02) 0.61 (0.05)
BLUP1STEP 0.29 (0.02) 1.41 (0.17)
BLUPa 0.52 (0.04) 2.10 (0.15)
BLUPFST

0.52 (0.04) 2.10 (0.15)

0.50 True value 0.90 (0.07) 2.92 (0.23)
BLUPPED 0.90 (0.06) 2.96 (0.21)
BLUPDYD 0.31 (0.03) 0.88 (0.89)
BLUP1STEP 0.49 (0.03) 2.16 (0.29)
BLUPa 0.90 (0.07) 3.00 (0.23)
BLUPFST

0.89 (0.07) 3.01 (0.24)

Prediction methods were based on BLUP: a mixed model
based on the pedigree relationship matrix and phenotypes
(BLUPPED), a two-step procedure in which DYD were
computed from a regular method based on pedigree and
phenotypes and then used for genomic prediction
(BLUPDYD), a single-step procedure that used the genomic
relationship matrix and the full dataset of pedigree, pheno-
types and genotypes (BLUP1STEP), a single-step procedure
with genetic differences among genotyped and non-geno-
typed individuals corrected by considering the difference
between pedigree-based and genome-based relationships for
genotyped animals (BLUPa) and a single-step procedure
that corrected the genomic relationship matrix as proposed
by Powell et al. (2010) (BLUPFST

). Selection was based
either on random phenotype (PY) or assortative
mating using EBV (PEBV).

Table 3. Coefficients (SDs) for regression of true on
EBV for different heritabilities and prediction methods
under PY and PEBV

Heritability
Prediction
method PY PEBV

0.05 BLUPPED 0.94 (0.25) 0.86 (0.22)
BLUPDYD 1.02 (0.13) 0.84 (0.14)
BLUP1STEP 1.01 (0.11) 0.66 (0.24)
BLUPa 1.02 (0.11) 0.66 (0.27)
BLUPFST

1.02 (0.11) 0.69 (0.24)

0.30 BLUPPED 1.00 (0.01) 0.89 (0.01)
BLUPDYD 0.97 (0.07) 0.89 (0.08)
BLUP1STEP 0.98 (0.07) 0.86 (0.11)
BLUPa 0.97 (0.07) 0.87 (0.09)
BLUPFST

0.97 (0.07) 0.88 (0.08)

0.50 BLUPPED 0.96 (0.07) 0.93 (0.08)
BLUPDYD 0.96 (0.07) 0.89 (0.05)
BLUP1STEP 0.99 (0.05) 0.99 (0.05)
BLUPa 0.97 (0.05) 0.90 (0.05)
BLUPFST

0.97 (0.05) 0.90 (0.05)

Prediction methods were based on BLUP: a mixed model
based on the pedigree relationship matrix and phenotypes
(BLUPPED), a two-step procedure in which DYD were
computed from a regular method based on pedigree and
phenotypes and then used for genomic prediction
(BLUPDYD), a single-step procedure that used the genomic
relationship matrix and the full dataset of pedigree, pheno-
types and genotypes (BLUP1STEP), a single-step procedure
with genetic differences among genotyped and non-geno-
typed individuals corrected by considering the difference
between pedigree-based and genome-based relationships for
genotyped animals (BLUPa), and a single-step procedure
that corrected the genomic relationship matrix as proposed
by Powell et al. (2010) (BLUPFST

). Selection was based
either on random phenotype (PY) or assortative mating
using EBV (PEBV).
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not knowing relationships will increase the variance
of EBVs and cause inflation; this has not been
verified.

(iv) Accuracy

Squared correlations between TBV and EBV (i.e. re-
liability) by heritability and prediction method are
shown in Table 4. Squared correlations are presented
in Fig. 2 for all replicates using a heritability of 0.30
under PEBV. Compared with BLUPPED, all genomic
prediction methods increased accuracy by about 37
percentage units and 22 percentage units under as-
sortative mating based on EBV and mass selection,
respectively.

With low heritability under PEBV, accuracy from
BLUPa and BLUPFST

was as good as from BLUPDYD

(Table 4). When these accuracies are comparable, the
single-step procedures with correction (BLUPa and
BLUPFST

) have an advantage over BLUPDYD because
they provide a unified framework that eliminates all

the assumptions applied in multiple-step methods.
With medium or high heritabilities under PEBV,
BLUPa and BLUPFST

have the highest accuracies
(Table 4; Fig. 2). The lower accuracy of BLUPDYD

compared with BLUPa and BLUPFST
results from

ignoring parent average in BLUPDYD. Including
parent average in predictions increases the accuracy
in multiple-step methods, but it is complicated
(VanRaden et al., 2009a). Parent averages are auto-
matically included in genomic predictions with single-
step methods.

(v) Other comparison measures

In addition to assessing the quality of genetic evalua-
tions through bias and accuracy from the difference
and correlation between TBV and EBV, PEV and
MSE were also considered (Table 5). All genomic
methods had the lowest PEV under PY for all herit-
abilities. Under PEBV, PEV also were lowest for
genomic methods except with low heritability. Com-
pared with MSE for BLUPDYD predictions, MSE for
BLUPa were 18–66% lower under PY and 60–96%

Table 4. Squared correlations between true and EBVs
(SDs) for different heritabilities and prediction
methods under PY and PEBV

Heritability Prediction method PY PEBV

0.05 BLUPPED 7 (4) 10 (4)
BLUPDYD 23 (5) 28 (7)
BLUP1STEP 29 (5) 25 (7)
BLUPa 29 (5) 27 (8)
BLUPFST

29 (5) 27 (7)

0.30 BLUPPED 20 (4) 23 (6)
BLUPDYD 49 (5) 56 (6)
BLUP1STEP 54 (4) 47 (6)
BLUPa 55 (5) 60 (5)
BLUPFST

55 (5) 60 (5)

0.50 BLUPPED 21 (4) 30 (6)
BLUPDYD 56 (5) 64 (6)
BLUP1STEP 61 (5) 49 (7)
BLUPa 61 (5) 67 (5)
BLUPFST

61 (5) 67 (5)

Squared correlations between true and EBVs were expressed
as percentages. Prediction methods were based on BLUP: a
mixed model based on the pedigree relationship matrix and
phenotypes (BLUPPED), a two-step procedure in which
DYD were computed from a regular method based on
pedigree and phenotypes and then used for genomic pre-
diction (BLUPDYD), a single-step procedure that used the
genomic relationship matrix and the full dataset of pedigree,
phenotypes and genotypes (BLUP1STEP), a single-step
procedure with genetic differences among genotyped and
non-genotyped individuals corrected by considering the
difference between pedigree-based and genome-based re-
lationships for genotyped animals (BLUPa) and a single-
step procedure that corrected the genomic relationship
matrix as proposed by Powell et al. (2010) (BLUPFST

).
Selection was based either on random phenotype (PY) or
assortative mating using EBV (PEBV).
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Fig. 2. Accuracy (squared correlations between true and
EBV) of BLUP methods for estimating breeding value of
selection candidates across 20 replicates with heritability of
0.30 under assortative mating selection based on EBV.
Prediction methods were a mixed model based on the
pedigree relationship matrix and phenotypes (BLUPPED;
solid line with triangles), a two-step procedure in which
DYD were computed from a regular method based on
pedigree and phenotypes and then used for genomic
prediction (BLUPDYD; dashed line with solid circles),
a single-step procedure with genetic differences among
genotyped and non-genotyped individuals corrected by
considering the difference between pedigree-based and
genome-based relationships for genotyped animals
(BLUPa ; solid line with squares) and a single-step
procedure that corrected the genomic relationship matrix
as proposed by Powell et al. (2010) (BLUPFST

) (dashed line
with x markers).
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lower under PEBV, with differences increasing with
heritability under both selection designs. The greatly
decreased MSE for all scenarios indicated that the
multiple-step BLUPDYD was less accurate. Consider-
ing the potential genetic gain from selection, BLUPa

and BLUPFST
were the most advantageous prediction

methods.

4. Discussion

Comparison of the four genomic prediction methods
at various heritabilities under two selection intensities
demonstrated that a single-step method with correc-
tion (either BLUPa or BLUPFST

) was a preferred
method of accounting for bias in genomic predictions.
Furthermore, two possible G for prediction of genetic
merit were tested. Genomic preselection of animals
often is included in dairy cattle breeding programmes
now. Thus, bias becomes an important concern with
the multiple-step method, because computation of
DYD assumes random selection of the Mendelian
sampling, which is clearly violated (Patry & Ducrocq,
2011). Because single-step methods do not create
pseudodata and are unbiased, they may be an at-
tractive genomic evaluation method.

Bias differences among the methods may be ex-
plained by how the different methods account for
genotypes of highly selected individuals (i.e. males).
Classical theory for modelling covariance among

individuals assumes no selection. Thus, covariances
among TBVs of selected individuals are no longer
described well by any (genomic or pedigree-based)
relationship matrix, unless all records used in the
selection are accounted for (as in BLUPPED)
(Sorensen & Kennedy, 1984; Kennedy et al., 1988).
Although all records are used in BLUP1STEP, only
genotyped (and mostly selected) individuals are in-
cluded in G. Since genetic values of non-genotyped
animals are, a priori, conditioned on genetic values of
genotyped animals (Legarra et al., 2009), bias is alle-
viated but not fully corrected. In a single-step method
with correction, such as BLUPa, bias is eliminated by
referencing genomic and pedigree-based relationship
matrices to the base population. With correction,
BLUPa (or BLUPFST

) is the most accurate for
GWMAS.

A pertinent question is which evaluation criterion
should be used to maximize genetic gain in selection
schemes. According to classical selection theory, best
prediction is ideal for selection (Henderson, 1973;
Fernando & Gianola, 1986). The best predictor
minimizes MSE, and is unbiased and not inflated
(b=1) by construction (Henderson, 1973). If we were
using the best predictor, accuracy, PEV or MSE
should provide the same ranking of methods. The best
predictor requires knowing the true model generating
the data. This is not the case here because true QTLs
were not included in the model for genetic evaluation.

Table 5. PEVs (SDs) and MES (SDs) for different heritabilities and prediction methods under PY and PEBV

Heritability Prediction method

PY PEBV

PEV MSE PEV MSE

0.05 BLUPPED 0.047 (0.002) 0.047 (0.002) 0.045 (0.003) 0.046 (0.003)
BLUPDYD 0.038 (0.002) 0.044 (0.004) 0.037 (0.004) 0.156 (0.040)
BLUP1STEP 0.036 (0.003) 0.037 (0.003) 0.049 (0.019) 0.106 (0.027)
BLUPa 0.035 (0.002) 0.036 (0.002) 0.059 (0.057) 0.062 (0.057)
BLUPFST

0.036 (0.003) 0.036 (0.002) 0.047 (0.021) 0.049 (0.021)

0.30 BLUPPED 0.241 (0.011) 0.242 (0.012) 0.230 (0.021) 0.234 (0.021)
BLUPDYD 0.153 (0.017) 0.289 (0.028) 0.134 (0.019) 2.088 (0.304)
BLUP1STEP 0.137 (0.014) 0.198 (0.020) 0.166 (0.025) 0.531 (0.106)
BLUPa 0.137 (0.015) 0.138 (0.014) 0.127 (0.020) 0.138 (0.024)
BLUPFST

0.137 (0.015) 0.138 (0.014) 0.126 (0.019) 0.136 (0.023)

0.50 BLUPPED 0.393 (0.020) 0.395 (0.019) 0.349 (0.031) 0.352 (0.032)
BLUPDYD 0.222 (0.028) 0.582 (0.069) 0.185 (0.032) 4.384 (0.615)
BLUP1STEP 0.198 (0.023) 0.369 (0.051) 0.257 (0.035) 0.854 (0.200)
BLUPa 0.195 (0.024) 0.196 (0.024) 0.170 (0.028) 0.179 (0.028)
BLUPFST

0.195 (0.024) 0.196 (0.024) 0.169 (0.028) 0.177 (0.027)

PEV and MSE are shown. Prediction methods were based on BLUP: a mixed model based on the pedigree relationship
matrix and phenotypes (BLUPPED), a two-step procedure in which DYD were computed from a regular method based on
pedigree and phenotypes and then used for genomic prediction (BLUPDYD), a single-step procedure that used the genomic
relationship matrix and the full dataset of pedigree, phenotypes and genotypes (BLUP1STEP), a single-step procedure with
genetic differences among genotyped and non-genotyped individuals corrected by considering the difference between pedi-
gree-based and genome-based relationships for genotyped animals (BLUPa), and a single-step procedure that corrected the
genomic relationship matrix as proposed by Powell et al. (2010) (BLUPFST

). Selection was based either on random phenotype
(PY) or assortative mating using EBV (PEBV).
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Instead, we used a linear model assuming multivariate
normality.

In practice, the relevance of the criterion used de-
pends on the selection schemes. If the parents of the
next generation come from (and only from) geno-
typed selection candidates, then accuracy is the cri-
terion to maximize, because selection candidates
share a common mean (i.e. they belonged to the same
generation) and thus bias is not a concern.

If for different candidates there are different
amounts of information (e.g. comparing progeny-
tested males vs. newborn animals), PEV or MSE have
to be considered. For example, in the presence of bias,
genetic gain is over (or under) estimated. Thus, new-
borns are thought to be better than what they are. In
this case, MSE is possibly the criterion of choice, be-
cause it also includes bias. For instance, Roehe &
Kennedy (1993), who showed that a wrong model
resulted in an artificial overestimation of genetic
trend, which raised the estimated merit of young
selection candidates. Similarly, inflation (b<1, which
is included in PEV or MSE but not in accuracy) re-
sults in exaggeration (both over and under) of esti-
mated genetic merit of newborns with respect to
progeny-tested animals.

However, accuracy is currently used to assess
genomic prediction methods in cross-validation stu-
dies (e.g. VanRaden et al., 2009a), although bias is
becoming an increasing concern (e.g. Luan et al.,
2009; VanRaden et al., 2009b ; Mäntysaari et al.,
2010). Consideration of bias, accuracy and inflation,
possibly through MSE, is strongly recommended
for the comparison of future genomic selection stra-
tegies.

5. Conclusion

Overall, a single-step genomic prediction method with
corrected G (BLUPa or BLUPFST

) was unbiased,
similarly inflated and more accurate than other

procedures even in the presence of selection. The
corrected G is an appropriate methodological sol-
ution that takes into account the effect of non-random
genotyping (due to strong selection) on prediction.
The results clearly showed that a single-step genomic

prediction approach is promising for animal/plant
breeding.
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project Genomia (AL). The project also was partly sup-
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Appendix

Genetic group model for unbiased genomic predictions

From the model of unbiased genomic predictions
presented in section (i), we have that

p(u1jm)�N(A12A
x1
22 1m, (A11)x1s2

u+A12A
x1
22 GAx1

22 A21s
2
u);

p(u2|m)yN(1m, Gsu
2),

and p(u|m)yN(Qm, Hsu
2), where H is according to

eqn (1) and Q is Q= A12A
x1
22 1

1

� �
.

The setting is like a genetic group model (Quaas,
1988) and equivalent mixed-model equations, which
yields the same solutions for b and u, is derived as in
Quaas (1988) as

XkX XkZ 0

ZkX ZkZ+Hx1l xHx1Ql
0 xQkHx1l QkHx1Ql+ax1l

2
4

3
5

r
b

u

m

2
4
3
5= Xky

Zky
0

2
4

3
5:

The above expression is simplified by computing
the product QkHx1 as

Note that A21=xAx1
22 A21A

11 and A22=
Ax1

22 xA21A12A
x1
22 =Ax1

22 xAx1
22 A21A

12. We can see that
xQkHx1=x 0 1kGx1

� �
and the product

QkHx1Q=1kGx11, which is simply the sum of its
elements.

xQkHx1=x 1kAx1
22 A21 1

� � A11 A12

A21 A22+Gx1xAx1
22

2
64

3
75

= x1kAx1
22 A21A

11x1A21 x1Ax1
22 A21A

12x 1 A22+Gx1xAx1
22

� �� �

= x1kAx1
22 A21A

11x1A21 x1 Ax1
22 A21A

12+A22xAx1
22

� �
x1Gx1

� �
:
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Thus, the mixed-model equations can be expressed
as

XkX XkZ
ZkX ZkZ+H*x1l

� �
b

h

� �
= Xky

Zky

� �
, (6)

with ZkZ appropriately expanded with zeros, h= u

m

� �
and setting H*x1 as

H*x1=
H11 H12 0

H21 H22 xGx11

0 x1kGx1 1kGx11+ax1

2
64

3
75

=
A11 A12 0

A21 A22+Gx1xAx1
22 xGx11

0 x1kGx1 1kGx11+ax1

2
64

3
75:

Absorption of m in (6) gives mixed-model equations
withH#x1 (eqn (2)) using expression (2) in Henderson
& Searle (1981). Computing H*x1 is similar to the
creation of Ax1 with genetic groups as reported by
Quaas (1988).

The expression (6) is of interest because there is
an explicit estimate of m. In addition, mixed-model
equations in (6) have a straightforward interpretation.
The genetic value of a genotyped individual is con-
ditional on its mean m and relatives through genomic
relationships. The genetic value of a non-genotyped
individual is conditional on its relatives through
pedigree relationships, including relatives with geno-
types.
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