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Introduction5

The derivative-free (DF) algorithm  (Smith and Graser 1986) is by far the most popular in6

variance component estimation by REML. Almost all REML software written in the past few7

years have used this algorithm (Jensen 1993, personal communication; Groeneveld 1993, personal8

communication; Meyer 1989-91 ) mainly due to its simplicity. In programming, DF requires only9

computing  the restricted likelihood function along with employment of a maximization algorithm10

that uses function values alone. In contrast, the derivative algorithms (D), such as EM (Dempster11

at. al. 1977) or Newton-Raphson (Press et al., 1989) use analytically computed derivatives of the12

restricted likelihood function. Such derivatives complicate programming, and in certain models13

are impossible to calculate.14

Recent reports suggest that the DF algorithm may be too expensive and/or too inaccurate15

with more than 1-3 traits. Ducos et al. (1993) used only combinations of 2-trait DF runs in his 7-16

trait analysis, because 3-trait DF runs were already too expensive. Groeneveld (personal17

communication, 1994) analyzed a data set containing five-trait records on approximately 900018

animals.  The analysis with a general-model program using the DF Simplex algorithm ran for19

several weeks. In a 5-trait study by Mäntysaari (personal communication) with an 800-animal data20

set, a DF analysis took close to a day, and the estimates were not plausible. Campos et al. (1993)21

obtained very different estimates of heritabilities from single and 2-trait analyses with a DF22

program. Such estimates are expected to be similar.23

The first goal of this paper was to investigate whether long running time and numerical24

inaccuracies in multiple traits are properties of the DF algorithm. The second goal was to compare25

accuracy and convergence properties of the D and DF algorithms.26
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Methods1

Derivative and derivative-free algorithms.2

Let L be the restricted likelihood function (Harville 77), and È  be the vector of variance3

components. DF denotes a class of maximization algorithms, such as Simplex, Rosenbrock  and4

Powell (Bazaraa et al. 1993; Minoux 1986) that maximize L without using the analytical5

derivatives:6

First-derivative algorithms solve (1) using the derivatives computed analytically. For functions7

that have only one maximum in the search space, these algorithms include those solving the8

system of nonlinear equations:9

A popular first-derivative algorithm in REML is EM (Dempster et al. 1977), which can be written10

as follows:11

where È r presents an estimate of È  in the r-th round, and em is a function that returns the next12

round estimate. The solving algorithm of EM is called fixed point (Woodford 1992), and is13

considered slow. Faster first-derivative algorithms exist that can be derived from accelerating the14

EM algorithm (Melijson 1986; Jamshodian and Jennrich 1993). First-derivative algorithms are15

expected to converge faster  than DF because of extra information. Maximization algorithms16

using second-derivatives, such as Newton-Raphson, are expected to converge even faster,  but the17

complexity of obtaining second-derivatives analytically makes such algorithms less attractive18

although not impossible. Lately, J. Jensen (personal communication, 1993) implemented a19

Netwon-Raphson algorithm in REML using R. Thompson's ideas of "average-information."20
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Convergence of D and DF algorithms1

Convergence rate can be described in terms of accuracy as a function of the number of2

rounds of iteration (Minoux 1986). Linear convergence means linear relationship between3

accuracy and round of iteration, i.e., constant number of rounds is required for a gain of one extra4

digit of accuracy. The EM algorithm seems to have a linear convergence. In a superlinear5

convergence, each round of iteration results in increasingly larger gains in accuracy. Finally, in a6

n-step convergence, n steps are required to implement one round of iteration. 7

The convergence rate of maximization algorithms for general functions cannot be derived8

easily. However, it could be derived for quadratic functions, and any twice-differentiable function,9

including L, is locally quadratic. Then, the convergence of better DF algorithms such as Powell or10

Rosenbrock is n-step superlinear (Minoux 1986), and  is dependent on n, the dimension of the11

function being maximized.  For better D algorithms, such as quasi-Newton  (first-derivative) or12

Newton-Raphson (second-derivative), the convergence is superlinear and does not depend on n13

(Bazaraa 1993; Minoux 1986). This leads to conjecture that better DF algorithms converge, in14

general, n times slower than better D algorithms. N can  be expressed in terms of  number of15

random effects, nr, and number of traits, nt, as:16

n = (nr +1)nt(nt+1)/2 (4)17

where the extra 1 is for the residual.18

This difference in convergence rate is only approximate because differences exist within19

better D or DF algorithms, and L is not quadratic. Also, more sophisticated methods may fail20

when the starting point is far away from the maximum.21

Cost of one step of D and DF in multiple traits22

Let W be a coefficient matrix of the mixed model equations  Assume that in DF all computing23

resources are spent in computing |W|. Also assume that in D all computing resources are spent in24

finding elements of W-1 corresponding to nonzero elements in W, or a sparse inverse of W. In25

dense matrices, computing the inverse requires 3 times more arithmetic operations than26

computing the determinant alone (Duff et al. 1989). Both operations require an equal amount of27

storage.  Approximately the same applies to the number of arithmetic operations in sparse28
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matrices (Misztal and Perez-Enciso 1993). The amount of storage required is 3 times larger for1

sparse inversion if the inverse elements are computed by columns (Misztal and Perez-Enciso2

1993), but is approximately equal if computing is by rows (R. Thompson, personal3

communication 1993). 4

In multiple traits, assuming that almost all traits are recorded, the coefficient matrix of the5

mixed model equations has nt  times more equations and an average equation has nt times more6

nonzero elements than in single traits. In dense matrices, the memory and computing requirements7

for inversion or computing the determinant for a matrix nt larger increase as nt
2 and nt

3,8

respectively.  The same applies to sparse matrices, where memory and computing requirements9

increase approximately as pq and pq2, where p is the number of equations and q is the average10

number of nonzeroes per equation (Duff et al. 1989). 11

Cost of one unit of convergence relative to single trait estimation12

Let C1
d be the cost of one step of D in a single trait estimation. Let us compute costs of the same13

level of convergence in nt traits for the DF and D algorithms: Cn
df and Cn

d. If the DF convergence14

is n times slower, computations for the matrix operations increase as nt
3, and computing the15

determinant costs a third of computing the inverse, the following formulas can be derived:16

Cn
d =  nt

3  C1
d (5)17

Cn
df  = a (nr +1)nt(nt+1)/2 nt

3 C1
d 18

       =  (nr +1) nt
4(nt+1 )C1

d  / 6 (6)19

and the relative costs are:20

Cn
d /C

1
d =  nt

3  (7)21

Cn
df / C

1
d = (nr +1) nt

4(nt+1 )/6 (8)22

   . (nr +1) nt
5/6 (9)23

Cn
df /C

n
d = (nr +1) nt(nt+1 )/6 (10)24
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  . (nr +1) nt
2/6 (11)1

According to equation (7), the number of numerical operations in D increase cubically with the2

number of traits. In equation (8), the cost of DF increases with the fifth power of the number of3

traits. From equation (1) one can find that the costs of  DF and D in models with 2 random effects4

are similar in single trait. DF is less expensive with 1 random effect, and D is less expensive with5

more than 2 random effects. In multiple traits, DF is nt
2 more expensive than D.6

Relative costs of multitrait DF REML evaluation using DF and D algorithms, computed7

with formulae (7) and (8) are presented in Table 1. The number of numerical operations increases8

rapidly in multiple traits, and for 2, 3, 4 and 5 traits, DF is 24, 162, 640 and 1875 times more9

expensive than a single trait D, respectively. For D the corresponding increases are smaller than10

DF but still large overall: 8, 27, 64 and 125, respectively. Although the memory  increases are 11

smaller: 4 , 9, 16  and 25, respectively, they may be prohibitively large considering that often12

insufficient memory limits the size of datasets in REML analyses. 13

The steep increases in the computing requirements in DF in multiple traits explain high14

running times of DF programs mentioned in the introduction. If a single-trait DF analysis took one15

minute of computer time, a 2, 3, 4 and 5-trait DF analysis would take approximately .5, 2.5, 1116

and 31 hours, respectively.  A run of D would take .1, .5, 1, and 2 hours, respectively.  If a single-17

trait run took 1 hour, a 2, 3, 4 and 5-trait DF analysis would take approximately 1, 7, 27 and 7818

days, respectively, and a run of D would take .3, 1, 3 and 5 days, respectively. 19

Accuracy of the D and DF algorithms20

In DF, if L(È ) is computed with r significant digits, then È  can be bracketed with at most21

r/2 significant digits (Press et al. 1989). Such a limit does not exist in D. Worse numerical22

accuracy of the DF maximization is illustrated with the help of Figure 1, which shows a quadratic23

function and its derivative.  The function is very flat, and the maximum of the function cannot be24

determined accurately by looking at the function alone. The maximum  can be determined much25

more precisely by finding a zero of the function's first derivative.26

Loss of accuracy in DF does not appear a problem at first. Most computations are done27



6

with double precision, which corresponds to 15-17 significant decimal digits, and estimates with1

1% or 2 significant digits of accuracy are considered sufficently accurate in practice. However, 2

the likelihood function could have low accuracy for a variety of reasons. Some accuracy is lost3

due to a roundoff error when summing all components of  L. Components of that function may4

have reduced accuracy. This particularly applies to the determinant, where the loss of accuracy5

could result from lack of pivoting in Cholesky decomposition-based packages, poor conditioning6

of the coefficient matrix and rounding errors associated with computing in large matrices. In7

multiple traits, the coefficient matrix of the mixed model equations is composed of R0
-1and Gi0

-1 - 8

covariance matrices between traits for residual and random effect i, respectively. Poor9

conditioning of  these matrices results in poor conditioning of W and subsequently low accuracy10

of determinants and traces. R0
-1and Gi0

-1 would be poorly conditioned numerically when traits are11

highly correlated or linearly dependent.  The loss of accuracy due to poor conditioning of W is12

also present in derivative maximization, but it has smaller effect on the estimates because of better13

numerical properties of the derivative maximization.14

Another source of inaccuracy could arise in algorithms where derivatives are obtained15

numerically by differentiation. For example, the Quasi-Netwon algorithm can be so implemented16

in DF, and one can regard other DF algorithms as using the numerical differentiation implicitly17

.The accuracy of such differentiation is dependent on the step side and could be very low for steps18

too large or too small.  Subsequently, the accuracy would be dependent on parameters that define19

the step size, and in particular could be good for some problems but poor for others.  20

Canonical transfomation21

In general-model REML, such as discussed previously,  the computing costs for one22

round of iteration or function evaluation increase cubicly with the number of traits. In canonical23

transformation  (CT) (Thompson 1976), such an increase is only linear, and memory costs24

increase very little.  D seems to be better suited than DF as a single-trait algorithm within CT25

because each round of iteration in CT could be regarded as a restart and restarts in DF are26

expensive. With D in CT, the convergence rate should not be much different from general-model27

D. Consequently the cost of CT could be linear with respect to the number of traits.  Numerical28
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properties of CT are better than in general models because of implicit scaling and easy taking care1

of a nearly-singular (co)variance matrices in case of high correlation between traits. CT was2

believed to be applicable only to a narrow class of models but Ducrocq and Besbes (1993) have3

shown that almost all restrictions of the canonical transformation while estimating breeding values4

could be removed. Misztal (1993) extended CT REML to multiple-random effects. Further5

research will determine if other CT restrictions can be removed in REML.6

Numerical tests7

Data consisted of 4540 records on 2147 cows with 3 conformation scores. Model8

included 51 fixed management, 2147 random permanent environmental and 2697 animal effects. 9

The choice of data set was not expected to influence the results significantly. Variance10

components for 1 to 3 traits were computed with several programs. The first set of programs11

were DFUNI for single-trait and DFMUV for multiple-traits from package DFREML version 2.112

by Karin Meyer (Meyer 1991; Misztal 1994). Both programs implemented DF Powell (later called13

DF/Powell) and DF Simplex (DF/Simplex) algorithms. Runs with the Simplex algorithm used14

default parameters and runs with the Powell algorithm had stopping criteria decreased from15

deafult 10-4 to 10-6. Because of numerical problems with more complex options, multi-trait16

analyses used an option for equal design matrices. The second program was DMUEM that used17

an accelerated EM algorithm (later called AEM). This program was E. Mäntysaari's modification18

of DMUAI of package DMU (Misztal 1994) originally written by Jensen and Madsen with19

support for the Newton-Raphson maximization. Acceleration in DMUEM was by Aitken20

algorithm applied every several rounds when acceleration parameters became sufficiently stable.21

DMUAI was not evaluated here because its debugging has not been finished when this paper was22

written. The last program was MTC (later called CT) by Misztal (Misztal 94) that used a23

canonical transformation, the EM algorithm, and multiple diagonalization for support of multiple24

random effects. With multiple diagonalization the estimates are only approximate, but the25

accuracy of the approximation was found very high for conformation and type traits (Misztal26

1993). MTC was not a general-model program because it required equal design matrices and all27

traits recorded. Stopping criteria for MTC and DMUEM were relative-averaged quadratic28
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changes between subsequent rounds smaller than 10-8. Starting variances for DMUEM were 60%1

of estimates computed by MTC, with covariances set to 0. For DFREML such covariances were2

set to a number close but not equal to 0. DFMUV does not estimates covariances if their prior3

values are 0.  MTC was started with variance ratios 1 for all traits.4

Results and Discussion5

 When priors for covariances were close to 0, DF/Simplex diverged  in 2 traits while6

DF/Powell required large number of likelihood evaluations. To avoid execessively high running7

time and divergence, these priors were set so that all initial correlations between traits were 50%.8

In all analyses, including those unreported with different priors, AEM and EM always converged9

predictably to several decimal digits of accuracy, and convergence rate was much less dependent10

on the choice of priors. 11

Table 2 shows the number of likelihood evaluations or rounds of iteration, computer time,12

estimates of heritabilities and genetic correlations for 1 to 3-trait analyses. Regarding the13

DMUEM estimates as exact REML, all computing options provided accurate estimates in single14

trait, differed at most by.01 (DF/Simplex by.02) for 2 traits, and were up to .07 off for both DF15

options in 3 traits. MTC's estimates were off by at most .01 in all traits except for one .0316

heritability difference in 3 traits. Errors in MTC were due to approximation of multiple17

diagonalization and not to the lack of convergence. The accuracy of the DF programs might have18

been better if their algorithms had been restarted or parameters of their maximization algorithms19

had been tuned. Experiences with such a tuning are discussed by Boldman et al. (1993) and20

Kovac (1991). 21

Relative numbers of likelihood evaluations for DF and rounds of iteration for AEM/CT are22

given in Table 3. For CT, the convergence rate was practically independent of the number of23

traits. For AEM, the convergence rate was 1.4 times slower for 2 traits and 1.8 times slower for 324

traits. For DF, the convergence rate was slower in 2 and 3 traits by 9 and 20 times for Powell,25

respectively, and by 13 and 57 times for Simplex, respectively. The dependence of convergence26

rate on the number of traits for DF was closer to 3-rd or 4-th power than expected quadratic,27
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being larger for Simplex than for Powell.  Larger increases for Simplex agree with Bazaraa et al.1

(1993), where this algorithm was described as less efficient when the dimensionality of the2

optimization  increased.  Only the convergence of the Powell algorithm was expected to be n-step3

superlinear. Slower than expected convergence in DF and some decrease in convergence rate of4

AEM could be caused by deviation of L from the quadratic function. 5

Table 4 shows increase of computing time per one likelihood evaluation or round of6

iteration. Rather than expectic cubic, the dependence was between linear and quadratic for DF7

and between quadratic and cubic for AEM. Such an increase in CT was less than linear. Smaller8

than expected increase in computing time for DF and AEM can be explained by two mechanisms.9

First, DFMUV used as DF took advantage of equal design matrices for each trait and10

subsequently the mixed-model matrix was more sparse. Such simplification would not have been11

possible if data contained missing traits or unequal models were used per trait. In such a case, DF12

would be about 5 times more expensive in 2 traits and 15 times in 3 traits. Second, operations13

other than sparse matrix factorization or inversion, such as setting-up the coefficient matrix, have14

costs lower than cubic. They are not negligible for small problems.  15

Computing time relative to the single trait DF/Powell is shown in Table 5. In single traits,16

DF/Powell was the least expensive program, with DF/Powell, AEM and CT running 1.8, 4.2 and17

9.6 times longer, respectively. In 2 traits, CT was the least expensive one at a relative cost of 17 ,18

followed by AEM at 22,  DF/Powell at 26, and DF/Simplex at 71.  In 3 trait runs, CT was the19

least expensive at 21, followed by AEM at 88,  DF/Powell at 151, and DF/Simplex at 686.  AEM20

was less expensive in multiple traits than any of the DF algorithms. The numbers from Table 521

should be treated cautiously because of incompatible features of the programs. Single-trait DF22

runs used a single-trait program DFUNI, which did not have any multiple-trait overhead present23

in CT and AEM. CT time was particularly slow in single trait because it used an unaccelerated24

EM algorithm. With acceleration, the CT convergence could be similar to that of AEM and25

computing times for all traits would be reduced accordingly. For instance, a single-trait26

accelerated version of CT converged in 25 rounds in 75 s, and ran only 1.8 longer than DF/Powell27

or as fast as DF/Simplex. Finally, despite a similar convergence criterion, the level of accuracy28

obtained by DF was smaller than by the other programs. For similar level of real accuracy (as29
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measured by differences from exact estimates) CT and AEM could have been iterated 30-50%1

fewer rounds.2

Times relative to those of single-trait runs are shown in Table 6. The increase was less3

than linear for CT, between quadratic and cubic for AEM, almost fifth-power for DF/Powell, and4

even larger for DF/Simplex. The increases for DF/Powell and AEM are similar to those expected5

from better DF and D algorithms in Table 1. 6

The comparison serves as a review of issues rather than a guideline to selecting a7

particular program. Only one data file and one model was used, and only results for 1 or 2 priors8

are reported. Only a few options in DFREML were tried and in particular the runs were not9

restarted. The programs differ greatly by the level of finishing. DFUNI and DFMUV were very10

well finished, culuminating years of interest and research in DF REML algorithms.  New interest11

in D REML programs was generated only recently after sparse-matrix inversion software became12

available, and DMUEM or MTC are still under active development.13

14

Conclusions15

Convergence of DF algorithms is strongly dependent on the number of traits, type of16

algorithm, algorithm details, and priors. Subsequently, in mutiple traits these algorithms are not17

only expensive but also unreliable, and reliable estimates should not be expected from more than18

2-4 traits. The convergence of D algorithms almost does not depend on the number of traits;19

reliable convergence was achieved when DF algoritms failed. Well programmed D algorithms20

have potential to be be faster than DF algorithms in almost all cases. Despite properties better21

than DF, D algorithms are prohibitively expensive with many traits. For instance, in a 5-trait22

analysis, the D algorithm will require about 125 more computing time and 25 times more memory23

than in a single trait. With a large number of traits, the only feasible procedure at this time is24

canonical transformation, where computing costs increase approximately linearly with the number25

of traits but only certain models are supported.  Further research will determine whether the26

canonical transformation REML can be generalized to general models.27

Summary28
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Computing properties of better derivative and derivative-free algorithms were compared1

theoretically and practically. Assuming that the log-likelihood function is approximately quadratic, 2

in a t-trait analysis  the number of steps to achieve convergence increases as  t2  in "better"3

derivative-free algorithms and is independent of that number in "better" derivative algorithms.4

Cost of one step increases as t3. Subsequently, both classes of algorithms have similar5

computational cost for single trait models. In multiple traits the computing costs increase as t3 and6

t5, respectively. The derivative-free algorithm is worse numerically conditioned. Four programs7

were used to obtain 1, 2 and 3 trait REML estimates from field data. Compared to single trait8

analyses, the cost of one run for derivative-free algorithms increased by 27-40 times for 2 traits9

and 152-686 for 3 traits. Similar increase in rounds of iteration for a derivative algorithm was 510

and 21, and it was 1.8 and 2.2 in canonical transformation. Convergence  and estimates of11

derivative algorithms were more predictable, and unlike derivative-free algorithms, were not12

dependent on the choice of priors. Well implemented derivative REML algorithms are less13

expensive and more reliable in multiple traits than derivative-free ones. 14
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Figure 1. A quadratic function and its derivative1. 1

                                  2

                                      y = -x2 + 2x - .63

    4

dy/dx = -2x+25

           1 The maximum is found by looking at y alone in derivative-free maximization and by6

finding zero of dy/dx in first-derivative maximization.7

 8
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Table 1. Theoretical relative number of arithmetic operations and memory requirements of1

derivative free (DF) and Derivative (D) algorithms for a 2 random-effect model. 2

Number of traits3 Number of arithmetic operations Memory

requirementsDF D

14 1 1 1

25 24 8 4

36 162 27 9

47 640 64 16

58 1875 125 25

69 4536 216 36
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Table 2. Number of rounds (likelihood evaluations for DF), computing time, estimates of1

heritabilities and genetic correlations in 1 to 3 trait analyses for programs with derivative free 2

Powell optimization (DF/Powell), derivative-free  Simplex optimization (DF/Simplex),3

accelerated EM,  and extended canonical transformation (CT). 4

Number of5

traits6

Measure Values 

DF/Powell DF/Simplex AEM CT

17 rounds 26 47 24 85

time [s] 42 76 175 405

h1
2 .45 .45 45 .45

28 rounds 238ab 639ac 33 84

time [s] 1129 2997 920 672

h1
2 .44 .47 .45 .44

h2
2 .33 .35 .33 .34

rg1,2 .76 .80 .76 .77

39 rounds 583a 2696ad 45 81

time [s] 6380 28808 3679 898

h1
2 .40 .45 .44 .44

h2
2 .26 .26 .32 .35

h3
2 .40 .37 .41 .41

rg1,2 .70 .72 .76 .76

rg1,3 .74 .72 .78 .79

rg2,3 .99 .93 .95 .95
a With prior correlations between traits for all effects .50.10
b Needed 2024 likelihood evaluations when prior correlations bewteen traits . 011
c Diverged after 1700 likelihood evaluations when prior correlations bewteen traits . 012

d Partial convergence with simplex variance at .4x10-413
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Table 3. Relative number of likelihood evaluations or rounds of iteration for 4 computing options1

and 1-3 traits. 2

Number of traits3 Relative number of likelihood evaluations or rounds of iteration

DF/ Powell DF / Simplex AEM CT

14 1.0 1.0 1.0 1.0

25 9.2 13.6 1.4 1.0

36 20.7 57.4 1.8 1.0

Table 4. Relative computing time per likelihood evaluations or round of iteration for 4 computing7

options and 1-3 traits. 8

Number of traits9 Relative time per likelihood evaluation or round of iteration [s]

DF/ Powell DF / Simplex AEM CT

110   1.0 1.0 1.0 1.0

211 2.5 2.5 3.8 1.7

312 6.7 6.7 11.2 2.3
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Table 5. Computing time relative to single-trait DF/Powell for 4 computing options and 1-3 traits1

. 2

Number of traits3 Relative Computing Time 

DF/ Powell DF / Simplex AEM CT

14 1.0 1.8 4.2 9.6

25 26.8 71.3 21.9 16.8

36 151.9 685.9 87.6 21.3

Table 6. Relative computing time  for 4 computing options and 1-3 traits. 7

Number of traits8 Relative Computing Time 

DF/ Powell DF / Simplex AEM CT

19 1.0 1.0 1.0 1.0

210 26.8 39.6 5.3 1.8

311 151.9 381.0 21.0 2.2


