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SUMMARY
Six packages for solving mixed model equations and estimating variance components by REML are compared.
Each has a unique strength. Meticulously finished DFREML is the only one that implements hypothesis testing for
variance component estimates. MTDFREML is a comprehensive, relatively easy to install and simple to use
package for analyses of experimental data. PEST, the only semi-commercia program compared, has the best user
interface and is the best supported program. The JAA/MTC package is the smplest and can compute multitrait
estimates of variance components for many traits in the repeatability model. ABTK introduces tools that with
built-in Unix utilities offer great flexibility to experienced users. Finaly, DMU is a comprehensive attempt for a
very genera package, efficient for both small and large data sets, and with unique support for a Newton-Raphson
type REML.

INTRODUCTION

More and more public software is available in animal breeding. To alarge extent thisis caused by demand
for software and by availability of computer networks. Computing problems in animal breeding are becoming
increasingly more complex, and fewer people are able to alocate large resources to devel op sophisticated software.
Computer networks can provide rapid distribution of almost any existing software across the globe in a matter of
minutes. The same network provides electronic mail capability to support fast communication between software
developers and users.

Sharing software has both advantages and disadvantages for software developers. On one hand, software
is closaly scrutinized and its bugs are more easily detected; aso, developers receive wider recognition for their
work. On the other hand, developers are expected to support their software for diverse applications on many
computing platforms, and such a support may be very time-consuming.

Increasing number of available software packages with smilar purposes calls for comparisons. It is
difficult to select the best package for everyone because no package will meet everyone's objectives. Fird,
requirements differ between projects and scientists. Execution speed rankings vary greatly among computers. Most
packages till evolve, and weak points present nowadays may be removed tomorrow.

Comparing many packagesis atask that can easily be overwhelming. This comparison is based on the
analysis of documentation, source programs, and on running examples. Because of space and time limitations, it is
hardly comprehensive, and many important issues and features are not discussed. All numbers in the paper that
describe limits of various packages or algorithms are approximate. The author apologizes for all omissions and
errorsthat are inevitably a part of all comparisons.

PACKAGES

The main task of packages described here is obtaining solutions to mixed model equations (MME) and
estimation of variance components by REML (Henderson, 1984). Asaminimum, all programs support animal
models with fixed and random cross-classified effects and covariables. Otherwise, the packages differ in many
features. In obtaining solutions, the program may be useful for small (< 10,000-100,000 equations) or large
(>100,000) problems. The models could be limited to single-trait or could be multitrait. Multitrait models may
support missing traits and different models per trait. Other features that may be supported are inbreeding, maternal
or unknown parent effects and record weights. As extra functionality, the package may test hypothesis on
significance of effects or variance components, or compute approximate prediction error variances for large data
sets. In the preprocessing programs, options include ability to recode character fields in the data, validation of
anima-parent order and birth dates, elimination of noncontributing animals (pruning) and assignment of unknown
parents. The programs may be easy or difficult to install, learn, use or modify. The documentation may be



extensive or minimal. Other characteristics are reliability, sophistication of diagnostics and speed.

Below we briefly characterize the packages covered in this comparison. More information on these
packages, as of February 1994, isin the Table and in the later text.
LSML
Dating to 1960s, this program by Harvey (1990) was a forerunner of present evaluation and estimation programs.
It computed simple statistics, solutions, variance components and tested hypothesis to mixed models with the
diagonal variance-covariance matrices. LSML, which was extensively used and cited until afew yearsago, used a
dense matrix inversion with absorption (Gaussian-elimination) of one effect, and variance component estimation by
Henderson-3 (Henderson, 1984). Although still available, LSML is not discussed later because it supports neither
anima model nor REML.
DFREML
Written by Meyer (1988), DFREML was the first public package to implement the derivative-free REML (Smith
and Graser, 1986). Extensively cited, it became the standard in the field to which every other programis
compared. Itsunique feature isalikelihood ratio test for testing the significance of variance component estimates.
The documentation is extensive, and it is the only one that has descriptions of all subroutines in the package.
DFREML appears very clean of errors. DFREML supports only 10 classes of models, athough the important
models are included. Also, learning curveis high.
MTDFREML
This program by Boldman, Kriese, Van Vleck and Kachman (1993) has been an independent development and
rewrite of an earlier version of DFREML. Compared to current DFREML, MTDFREML is more general model-
wise, lacks some features and is easier to install and to use. The MTDFREML manual is user-friendly and
contains plenty of program and background information.
PEST & VCE
PEST by Groeneveld, Kovacs and Wang (1990) is an ambitious attempt for a MME solution program with a
SASHike user interface. Its several types of solvers support both small and large data sets. PEST accepts input
datain avariety of formats, and is easier to use than other packages. It has been well supported on many
computing platforms, is extensively documented and comes with many test files. PEST isthe only program that
carries an abligatory price and has no comment lines in the program. V CE is a variance component program by
Groeneveld (see software paper in this proceedings) that can be used standal one but works best with PEST for
data preparation. Many maximization algorithms are supported. VCE is modified and compiled for every model
and data by a Unix script.
JAA/MTC etc.
These programs are research off-shots of Misztal. JAA isasolution program that uses iteration-on-data using
second-order Jacobi.(Misztal, 1987, 1989). Despite being small, it can process large data sets, and is the only one
with support for alarge-model approximation of prediction error variances in the animal model. MTCisa REML
program using the EM algorithm with canonical transformation and simultaneous diagonalization for support of
severa random effects (Misztal, 1994). Neither JAA nor MTC supports the maternal effect; MTC does not
support missing-traits. JAA was the first animal program used in many countries and has been modified
independently to include missing features or to implement a new model. JAA and MTC have fewer features and
are less documented than the other packages.
ABTK
The toolkit by Golden, Snelling and Mallinckrodt complements Unix tools and is the only package written in C.
Unix tools can perform data manipul ation operations such as cutting, pasting, editing, selecting etc., although the
number of optionsin each tool can be intimidating to casual Unix users. Added tools include summation of
coefficients, computations of factorization, inverses and traces. Many tools can use compressed files and thus are
suitable for large data sets. Tools are combined into programs using pipes and Unix scripts. ABTK installs on
Unix only and requires Unix expertise to use it. It also requires knowledge about internals of mixed model
computations, athough quite good ABTK manuals offers help in many common problems. ABTK is



enthusiastically supported by its devel opers.

DMU

DMU by Jensen and Madsen is a comprehensive collection of programs used in Denmark for research and routine
evaluation. Programs at first appear difficult to use because of cryptic parameter files and insistence on using the
same file names in every analysis. However, these nuisances are compensated by extensive diagnostics and
completeness of the package. DMU includes a variance component program called DMUAI (based on ideas of R.
Thompson) that uses Newton-Raphson maximization. In a single-trait analysis, this program converged in 2
rounds while a DF equivalent took 60. DMU is still being actively modified. When it reaches maturity, it may
become the most comprehensive program in this group.

GENERAL CONSIDERATIONS
Models and species. Models used to analyze the data are usually species dependent, and features of packages
reflect the species with which the authors work. This orientation can be found by studying examples included with
the packages. In dairy cattle, production data are often analyzed by a single trait repeatability model, and
conformation data by a multrait trait (repeatability) model with no missing traits. Unknown parent effects are
considered important but inbreeding is not. In studies involving relationships between lactations, a multitrait model
with sequentially missing datais desirable. For pig and poultry data, a desirable model is multitrait, and especially
for pigs with missing traits. Inbreeding is more important but unknown parents are not. Different model for each
trait may be needed. In beef cattle data, models are multitrait with missing data, with maternal effect considered
essential. Neither inbreeding nor unknown parent groups are considered important. Required features also depend
on the type of data. Experimental data sets with fairly complete pedigrees may benefit more from the consideration
of inbreeding but less from unknown parent groups. The opposite is true with large data sets.
Types of programs or packages. Packages are written for many reasons. Some like JAA are research "off-shots"
that try to demonstrate a new methodology. These packages have limited functionality and are not necessarily easy
to use, but they can do specific tasks (at the time they were written) better than other programs. "Comprehensive"
packages like MTDFREML, ABTK or DMU may be written to let a particular person/institution automate
common analyses. They tend to be more general, but their ease of use depends on the contact between users and
developers, closer contact reducing the need for ease of use. Finaly, "universal" packages like PEST try to
combine best ideas in the field and be easy to use, comprehensive programs for a general audience. Such packages
(may) eventually become commercial. The line between all the categoriesis blurred, and DFREML can be
characterized as the combination of al of them.

A package can aso be classified as general-purpose, custom, and toolbox. A general-purpose package
supports a class of models. It isnot very efficient, but it can be rapidly adapted for various models, within its
model range. Most programs fall into this category. A custom package supports just one task, for instance a
routine genetic evaluation on a national level. Such a package (e.g., Misztal et al, 1992) is efficient comptationally
and can provide very elaborate output, but it is difficult to modify. Custom packages are not presented here. The
last group, toolboxes such as ABTK, provide a set of "superinstructions”. A problem is solved by writing a
program in the toolbox language. The toolboxes can be very powerful for many different problems but they
require an expertise to write a program.

Ease of use.This criterion can be split into two: ease to learn and ease to use once learned. Only PEST uses a text
user interface, where details on models and methods are spelled in quasi-English. DMU uses "cryptic” files that
contain a combination of file names and numbers. DFREML, MTDFREML, and JAA ask questions interactively,
but their understanding requires prior reading of the manual. Text user interface is definitely easier to use, but it
also requires more programming and increases the program size. "Cryptic" parameter files result in alonger
learning curve, but do not affect ease of use very much once learned.

Target audience. Application defines what kind of package may be the most desirable. Generality and ease of use
are the most important criteria for standard analyses. In research involving new methodology, one would choose
programs that are simpler, easier to understand and modify, and where a good support from the author is available.



Larger programs are likely to be more difficult to understand and subsequently modify. If afeature is missing or if
abug is detected, contacting the author may be the only choice. On the other scale, a small program may be
missing many features, but adding them could be easy. This makes smaller programs more suitable for "leading-
edge" research in new methodology. Alternatively, more comprehensive programs are likely to be preferred by
scientists working on standard problems. Good documentation and comment lines greatly simplify modifications of
either type of program. All packages except PEST have many comment linesin programs.

TECHNICAL ISSUES
Data recoding. All packages accept datafilesin at least free format. Most packages PEST can recode al
character fields, JAA (viaacompanion program RENUM) only animals. Other packages accept numeric data
only. DFREML and partly JAA prune anima's pedigrees, i.e., eliminate unnecessary animals from pedigrees.
JAA verifies that animals are younger than their own parents, and assigns unknown parent groups, both based on
the year of birth.
Programming language. All but one package are written in Fortran-77 (F77), which is very efficient in numerical
operations, has powerful I/O formatting, and in which extensive numerical libraries are available. Unfortunately
F77 has limited syntax and lacks memory management. Consequently large F77 programs are difficult to write,
modify, and understand. Also, they need to be recompiled to take advantage of larger memory. Limitations of F77
caused many authors to use common extensions, which work on many but not with all platforms, creating
compatibility problems. ABTK uses the C language that addresses many F77 limitations. Not yet released
MATVEC by T. Wang (1994, personal communication) uses C++, an object-oriented extension of C. C++ is
more difficult to program initially, but with proper libraries combines the ease of use of amatrix package with the
versatility and speed of a programming language. There are good public-domain compilers available for C and
C++ for aimost any computing platform. Because Fortran programs cannot be converted easily to C or C++, a
possible upgrade path for existing Fortran-77 programs is via Fortran-90, which supports old Fortran syntax and
adds many new features, including memory management and some forms of object programming. However,
Fortran-90 compilers are scarce at thistime.
Operating system and compilers. Because of extensions incorporated in packages and different implementation of
details in compilers etc., programs compiled in one environment may not compile in others. Troublesome
extensions include data assignment in the parameter declaration like integer x/1.0/, or reading the alphanumeric
variable with the* instead of '(a)' format.Many program developers and users have migrated recently to Unix,
which has many useful tools, including the make tool for program installation. Because Unix systems and
compilers are not 100% compatible, distribution prepared on one computer is likely to fail on another one. The
author had problems with installation of all packages except JAA, which he developed, and PEST, which is
packaged for a specific computer. The package with the most sophisticated script, DFREML, was also the most
difficult toinstall. One should expect the easy installation only on the platform where the package was developed
or explicitly tested, however, many problems can be resolved in afew days.

COMPUTING COST

Packages are composed of many blocks such as data preparation, creating MME, computing solutions,
and computing the determinant or the inverse of the MME matrix. Usually only one or two blocks are critical to
performance. Below we describe some operations and algorithms that are or could be performance bottleneck.
Disk operations. In iterative programs where data or matrix coefficients are read from disk repeatedly, reading
from and writing to disk may take up to 95% of all computing time. Therefore, fast disk transfers are essential to
high performance. A genera ruleisthat formatted transfers are dower than unformatted, and unformatted
transfers are faster for large than small variables. For instance, on a Sparcstation 2, the transfer speed of an
integer array of size 3 is 80 kbytes/s formatted and 136 kbytes/s unformatted. For an array of size 100, the
transfer speed is 148 formatted and 2007 kbytes/s unformatted. In some compilers the second statement of the
functionally identical statements "read(1)(x(i),i=1,100)" and "read(1)x " executes much dower (five times on the



above Sun). All large-data packages use unformatted read, and all of these but PEST use large-variable transfers.
Determinant and traces. The most expensive procedure in aREML program is the computation of the determinant
or trace. DFREML computes the determinant by Gaussian elimination, and the other packages by matrix
factorization. JAA and ABTK compute traces by sparse inverse, at a cost of about 3 times larger than the
factorization (Misztal and Perez-Enciso, 1983); All reorder the equations by the minimum-degree ordering
(George and Liu, 1981). Sparse matrix factorization is faster and more memory-efficient than the sparse matrix
absorption because of less overhead, but differences are small. The performance of the sparse computations is very
dependent on the sparsity of the matrix, and can be expected proportional to n*5ft> memory and n*%? arithmetic
operations, where n is the number of animals, f is the number of effects, and t is the number of traits. The sparse
matrix software allows for matrices as large as 10,000-100,000, depending on the computer, model and data.
PEST uses acommercial sparse matrix package, included in its cost. MTDFREML, JAA, ABTK and DMU can
use a free package FSPAK (Perez-Enciso et al., 1994). FSPAK has an option to compute the sparse inverse,
drastically reducing the cost of implementing the derivative-based REML algorithms.

Derivative and derivative-free maximization in REML. The speed and accuracy of the REML variance component
estimation are dependent on the maximization strategy. The popular derivative-free (DF) maximization used in
DFREML, MTDFREML, VCE and DMU isvery dow in multiple traits as thousands rounds of iteration may be
needed to obtain convergence. Assuming that the logarithm of the restricted likelihood function (L) is
approximately quadratic, Misztal (1994) calculated that the number of steps to achieve convergencein t-traitsis ~
t> with good DF algorithms, but it does not depend on t in better derivative (D) algorithms. Better DF algorithms
included Powell and Rosenbrock and better D agorithms included quasi-Newton or Broyden (as nonlinear
solving). The latter include the accelerated EM algorithm. These costs are underestimated because the L function is
approximately quadratic only close to the maximum. Worse convergence properties of DF can be seen intuitively
by noting that D can sense a desirable direction (gradient) in one round, while DF has to do approximately t?
rounds to probe al the dimensions. The combined costs of factorization/inversion and maximization are at least t3
and t° numerical operations for better D and DF agorithms, respectively. Programs using D algorithms are not
common because DF agorithms are easier to implement and inversion before FSPAK became available was very
expensive. The only package that supports multitrait D algorithm (Newton-Raphson) is DMU.

Results of analyses with many traits and the general model are not likely to be accurate. First, the
accuracy of the factorization/determinant decreases as traits are becoming more linearly dependent and the MME
matrix islarger (Misztal, 94). Second, the maximization method may fail. "Faster" DF (such as Powell or
Rosenbrock as opposed to smplex) or D (Newton-Raphson or quasi-Newton as opposed to fixed-point=EM)
algorithms may actually converge dower far away from the maximum, and may need a fall-back to dower
algorithms in early roundsto avoid divergence. Also, DF's solutions are less accurate than D because finding a
maximum, where the maximized function is flat by definition, islessaccurate than finding a zero of a derivative,
which is not flat. Together, a general-model REML, and particularly DF, may be too expensive and inaccurate



with more than 2-4 traits.
With many traits, the only feasible procedure at this time is canonical transformation (CT) (Lin and Smith,
1990), where the computing cost increases only linearly with the number of traits but only certain models are
supported. This procedure is also insensitive to high correlations between the traits, but it is restricted to analyses
with same mode! for each trait,
al traits recorded, and one
random effect. CT is supported
by DFREML, VCE and MTC, 1000000 o[ e
Additionaly, MTC alows for
CT with several random effects 100000f === P T ——
by near-simultaneous-
diagonalization, extending the
range of models to repeatability
models (Misztal, 1993).
Research by Ducrocq and
Beshes (1993) suggests that the
other restrictions of CT might be 100 -
removed.
Figure 1 presents CPU
time in general-model D,
genera-model DF and canonical :
transformation REML for w O O O O OO O OO0
different t. Thetimes are 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
relatively small for canonical Number of traits
transformation, increase steeply
for DF, D being in between. If a  Figure 1. Relative cost of multitrait REML analyses for general-
single-trait REML took 1 minute  model derivative-free (DF), general-model derivative (D) and

of computing time, a2 trait canonical transformation (CT) algorithms.
REML would take at least 1 hr

in DF, 8 minutesin D, and 2

minutesin CT. For 5 traits, these times would be 2 days, 2 hrs, and 5 minutes, respectively, and for 15 traits 527
days, 2 days, and 15 minutes, respectively. If the memory required were 2 Mbytes in single trait, for D or DF it
would be 8 Mbytesin 2 traits, 50 Mbytesin 5 traits and 450 Mbytesin 15 traits.

Solving systems of equations. Algorithms to solve systems of equations include direct-in-memory, iterative-in-
memory, iterative-on-disk, iterative-on-disk-on-data. The direct-in-memory algorithms are those discussed in the
section on determinants and traces. They provide accurate solutions but are suitable for small systems of equations
(10,000-100,000 equations) because of quadratic cost and substantial memory use. DFREML and MTDFREML
use this method exclusively. Iterative methods (Y oung, 1971) trade speed and accuracy, where alower accuracy at
alower cost is acceptable; their cost islinear. Memory-based iterative methods are suitable for solving up to
30,000-500,000 equations. PEST implements SOR iteration in memory and DMU can use many different solvers
from ITPACK (Kincaid et a., 1982). Solversin ITPACK calculate acceleration parameters that otherwise have to
be provided. Disk-based solvers are dower than those memory-based but are less constrained by the memory
limits. ABTK uses a disk-based Gauss-Seidd iteration. It uses the least amount of memory but is consuming a
large amount of disk space. In disk-based iterative methods, almost al computing timeis spent in disk reading.
Because the system of equations s, in general, much larger than the data from which the equations were generated,
iteration-on-data, i.e., reading the data and recreating the equation coefficients every round, saves substantial disk
space and computing time. The iteration-on-data algorithms can be based on Gauss-Seidel, where several
differently sorted data files are needed (Schaeffer and Kennedy, 1986), or on second-order Jacobi where only one
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such unsorted file is necessary (Misztal and Gianola, 1987). A combination of the two methods exists where the
samefileisread severa times (Misztal et a., 1989). The iteration-on-data algorithms are suitable for .5 min
equations and more. JAA (single-trait program) and DMU can use iteration on data with a combination of Gauss-
Seidel and second-order Jacobi. PEST supports both iteration-on-data solvers.

Multiple traits increase the memory/disk costs of obtaining the solutions iteratively by approximately t to
t%, and the total computing time may increase even more because of a ower convergence rate. The convergence
rateisfaster in block iteration, at a cost of more storage for the diagonas (Van Vleck and Dwyer, 1985). The
block iteration is supported by PEST and DMU. Storage may be closer to single trait with the implicit storage
(Tier and Graser, 1990), and procedure for canonical transformation without commonly known restriction is
available (Ducrocq and Besbes, 1993); no package supports either option.
Inbreeding algorithm. The cost of the inbreeding agorithm by Quaas (1976) is quadratic with the number of
animals and may be prohibitively expensive with >500,000 animals. Newer algorithms (Tier, 1990; Golden et al.,
1991; Meuwissen and Luo, 1992; VanRaden, 1982) have smaller cost. DFREML, PEST, ABTK and DMU
support inbreeding; only ABTK uses a faster algorithm.

CONCLUSIONS

This paper compared six packages mainly based on features and algorithms. Another paper in these
proceedings will evaluate the packages accuracy in estimating variance components. We hope that both
comparisons will help users to select an appropriate package for their needs. We also hope that commentsin this
paper will help devel opers to upgrade their packages.

Most developers are not compensated monetarily for their work. They work hard to ensure that a program
written to support a project on a specific platform will work in more general situations under many computing
platforms. If we experience problems with installing a public program, we should remember that writing such a
program ourselves would take much longer or could be smply impossible. A positive and liberd attitude toward
the developers will ensure that new programs/packages will be developed and their authors will not be reluctant to
make them widely available.
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Featur e Program/Package
DFREML MTDFREML PEST /VCE JAA/MTC ABTK" DMU
General
Species orientation all beef, pigs pigs dairy cattle beef cattle all
Y ear first released 1988 1992 1989/1993 1988/1993 1991 1993
Development system(s) DEC(Unix) PC(DOYS) Sun (Unix) PC (05/2), RS/6000 Convex(Unix),
Sun (Unix) (Unix) IBM(CMS)
Linesin source code’ 21562 9804 12734/4653 7551 >17000 23772
Comment linesin source 2531 2176 6/14 1988 >3000 > 1527
Pages in manual® 100 120 102 35 86 24
Functionality
MME solutions - small data | v v v v v v
MME solutions - large data v v v v
Repeatability - large data v
MME - Hypothesistesting | v v v v
REML v v v v v v
SD of REML estimates v v
Model
MT genera model v v v v v
MT CT v v REML only
maternal effect v v v v v
unknown parent groups v v v v

3 MM E=mixed model equations,MT=multiple trait, CT= canonical transformation; ® more features supported by programming; ¢ approximate




